Initial Development of a Program for Drone Micro-Doppler Signature Modelling

Jovan Radivojević, Predrag Petrović, Aleksandar Lebl, Mladen Mileusnić

Abstract—Micro-Doppler signature spectrograms obtained by FMCW radars are powerful method for malicious drones detection, identification, localization and classification. Our aim in this investigation has been to replace the base of spectrograms recorded on polygons using high number of available drone types by the spectrograms obtained by the application of originally developed program. Initial program development and verification are described in the paper. It is presented how the calculated spectrograms may be used to determine the important parameters of drones’ flight and construction: number of blades in a rotor, rotors’ angular rotation rate and blades’ length which is the first step in a decision about an applied drone type. The presented results are the starting report on our important development devoted to the improvement of overall public safety.

Index Terms—Malicious drone identification; micro-Doppler signature spectrograms; drone hovering; program for drone spectrograms modelling.

I. INTRODUCTION

DRONES or unmanned aerial vehicles (UAVs) implementation brings great benefits in everyday life by replacing human activities in many areas. Drones may perform some important actions more precisely, more promptly than humans and without people risk exposure. But, on contrary, drones may often be the cause of sudden and unexpected danger for human lives and/or the whole world economy [1], [2].

There are solutions based on several sensor types which may be applied to malicious drones’ detection, identification, localization and classification (DILC). The most often applied sensors are radars, cameras (optical and infra-red), audio and radio-frequency (RF) sensors. The benefits and drawbacks of each sensor type application are emphasized in [3], [4]. The applied solutions are usually based on several (even three or four) different sensor types [5], [6]. Among the sensors, radar is especially important due to its relative independence or very low dependence on weather and lighting conditions as fog, rain, smoke or darkness [7]. The present solutions are based on two radar types implementation: Frequency Modulated Constant Wave (FMCW radar whose principles of operation are explained in [8]) and Forward Scatter Radar (FSR whose principles of operation are explained in [9]). Drone spectrograms which are obtained by FMCW and FSR radars are especially important for applied drones identification and classification. They are analyzed in a significant number of existing solutions and [10], [11] are just two examples. In the case of FMCW radar, the obtained spectrograms follow from the Doppler effect of drone parts micro motion to the transmitted radar signal. We speak about drones micro-Doppler signatures, i.e. the obtained graphs are specific for each type of drones [12]. In practical situations the special problem is to distinguish drones from other flying objects with similar dimensions (e.g. birds) whose spectrograms may be similar to drone spectrograms [13].

Drones DILC using spectrograms supposes collecting a great number of practical records on the significant number of different drone types. The records have to be made when drones are at different heights, at different distance from radar (meaning at different elevation angles), when they are hovering or when they are flying, when there are more drones present in the same time (drone swarms) and so on. Besides, the spectrograms appearance depends on some specific drones characteristics as the number of drone’s rotors, number of blades on each rotor, the length of blades and the rotors’ rotation rate (in rounds per minute – RPM or in rounds per second – RPS). So, it is necessary to have different drone types and to make many spectrograms for each type under different conditions. Due to these problems it is important to develop the program which allows spectrograms calculation and presentation (without practical scenarios recording), especially in the initial phases when DILC criteria have to be defined [7], [11], [14].

IRITEL has a great experience in the development, modernization and implementation of radar systems, development of software for radar systems receivers and simulators of radar operation. The contribution [15] has two-fold relation to the solution presented in this paper: as a realized simulator and as it considers radars with Doppler Effect. Micro-Doppler signatures are formed on the base of the received radar signal and IRITEL has developed both simulators of radar signal receivers [16], [17] and practical solutions of these receivers [18], [19]. The control of radar receivers is the subject of contributions [20], [21]. A good-quality generated signal is also important for FMCW radar operation and IRITEL’s solutions in this area have an international verification [22], [23]. IRITEL’s complete radar systems in the area of AESA radars [24], [25] and in the area of existing radars modernization [26] - [28] are additional guarantee for future successful practical implementation of solution from this paper.

The main theoretical aspects of FMCW radar operation are explained in the Section II. This explanation includes the method how spectrograms are calculated. The block-scheme of the developed program for spectrograms calculation is

Jovan Radivojević is with IRITEL a.d., Batajnici put 23, 11080 Belgrade, Serbia (e-mail: jovan.radivojevic@iritel.com).
Predrag Petrović is with IRITEL a.d., Batajnici put 23, 11080 Belgrade, Serbia (e-mail: prepa@iritel.com).
Aleksandar Lebl is with IRITEL a.d., Batajnici put 23, 11080 Belgrade, Serbia (e-mail: lebl@iritel.com).
Mladen Mileusnić is with IRITEL a.d., Batajnici put 23, 11080 Belgrade, Serbia (e-mail: mladenni@iritel.com).
II. SPECTROGRAM SIGNAL CALCULATION

The signal generated in FMCW radar is sinusoidal and its frequency is linearly variable as a function of time. The drone spectrograms are obtained on the base of the returned echo signal from the moving rotor blades. The echo signal from all blades forming one rotor may be expressed by [29]:

$$S_z(t) = \sum_{k=0}^{N_b-1} s_k(t) =$$

$$= L \cdot \exp \left(-j \frac{4 \cdot \pi}{\lambda} \left(R_0 + z_0 \cdot \sin \beta \right) \right) \cdot \sum_{k=0}^{N_b-1} \sin \left(\Phi_k(t) \right) \cdot \exp \left(-j \cdot \Omega \cdot t \cdot \cos \left(\frac{2 \cdot \pi \cdot k}{N_b} \right) \right)$$

(1)

where it is

$$\sin(\Phi_k(t)) = \sin(\Phi_i(t))/i, \Phi_i(t)$$

(2)

and

$$\Phi_i(t) = -4 \cdot \frac{\pi}{\lambda} L \cdot \cos \beta \cdot$$

$$\cdot \cos \left(\Omega \cdot t + \varphi_0 + \frac{2 \cdot \pi \cdot k}{N_b} \right)$$

(3)

\(k = 0, 1, 2, \ldots, N_b - 1 \).

The sign may be + or − before \(\Omega \cdot t \), depending on the direction of the rotor rotation for each unique rotor.

The meaning of variables in these two equations may be expressed with the reference to the Fig. 1:

- \(L \) – the length of each blade;
- \(N_b \) – number of blades in each rotor (two possibilities are presented separately: rotors with two or three blades);
- \(R_0 \) - distance between the radar and the drone rotor (approximately the same as between radar and drone);
- \(z_0 \) – drone height;
- \(\beta \) – drone elevation angle;
- \(\Omega \) – rotor angular rotation rate;
- \(\lambda \) – radar signal wavelength;
- \(\varphi_0 \) – rotor starting rotation angle.

The returned signal from all drone rotors is:

$$S_z(t) = \sum_{i=1}^{N \cdot N_b} \sum_{k=0}^{N_b-1} s_k(t) =$$

$$= L \cdot \exp \left(-j \frac{4 \cdot \pi}{\lambda} \left(R_0 + z_0 \cdot \sin \beta \right) \right) \cdot$$

$$\cdot \sum_{k=0}^{N_b-1} \sin \left(\Phi_k(t) \right) \cdot \exp \left(-j \cdot \Omega \cdot t \cdot \cos \left(\frac{2 \cdot \pi \cdot k}{N_b} \right) \right)$$

(4)

where it is:

$$\Phi_k(t) = \frac{4 \cdot \pi}{\lambda} L \cdot \cos \beta \cdot$$

$$\cdot \cos \left(\Omega \cdot t + \varphi_0 + \frac{2 \cdot \pi \cdot k}{N_b} \right)$$

(5)

\(k = 0, 1, 2, \ldots, N_b - 1 \).

and

$$N_b$$ - the number of rotors on the drone.

In general case, all rotors have their own specific angular rotation rate \(\Omega \). The difference in rates may be even more than 2:1 when drone is flying left or right [30]. In our analysis in this paper we consider that drone is hovering. Thus we suppose that all rotors have the same \(\Omega \). The range of \(\Omega \) values may be estimated on the base of graphs from [31] which present drone performances when rotors angular rotation rate changes in the range 1400-8600 RPM, or, approximately, 20-150 RPS. The direction of rotors rotation is standardized to allow stable flight. In the case of drone with four rotors (quadcopter) two opposite rotors rotate in the clockwise direction and to other opposite rotors rotate in counter clockwise direction [32]. The length of blades when quadcopters or hexacopters are applied varies in the range between 11.9cm and 38.1cm according to some available literature [11], [13], [33]-[36]. The heights \(z_0 \) for all rotors are also the same as we may assume that drone is always positioned parallel to the ground. The assumption of all \(R_0 \) values equality is not quite valid. It would be necessary to precisely involve distances between rotor centres to determine exact values of \(R_0 \). Nevertheless, we shall also suppose that there is no difference between \(R_0 \) without important loss of generality. The elevation angles \(\beta \), for all rotors are also practically the same and they are calculated as the ratio of \(z_0 \) and \(R_0 \). Our investigation has been performed for FMCW radar operating at 24GHz, i.e. \(\lambda=12.5mm \).

The standard procedure to calculate spectrogram includes calculation of Short Time Fourier Transform (STFT) of the considered signal according to the equation [38]:

$$STFT \left(S_n(m, o) \right) = \sum_{m=-\infty}^{\infty} S_n \cdot w_{n,m} \cdot \exp \left(-j \cdot o \cdot t_n \right)$$

(6)

where \(w_n \) is the Hanning window defined by [39]:

$$w_n = \frac{1}{2} \cdot \left(1 - \cos \frac{2 \cdot \pi \cdot n}{N} \right) \quad \left(n = 0, 1, 2, \ldots, N \right)$$

(7)

III. PROGRAM STRUCTURE SHORT PRESENTATION

The block-diagram of the program for spectrogram calculation is presented in the Fig. 2.

![Fig. 1. Parameters included in drone spectrograms calculation](image)

![Fig. 2. Block-diagram of the program for spectrogram calculation](image)

The first step in the program flow is to define input data: parameters of drone position towards radar, drone construction and operation, radar signal characteristics and the characteristics of desired spectrogram presentation. The parameters of drone position are its elevation angle \((\beta) \), its...
The first step in calculation realization is related to each blade rotation. The calculation procedure follows the equations (1) and (2) in this step. The following step is to sum the echo signals from all single blades forming one rotor. This summing is also part of equations (1) and (2). The third step in calculation process is to sum all echo signals from drone rotors, according to equation (3) and (4). The final step is related to spectrogram calculation using STFT according to the equation (5). Before STFT calculation, echo signal is modelled applying Hanning window signal according to the equation (6).

The output result of our calculation is the spectrogram presentation. A new spectrogram is obtained for each selected combination of input data parameters according to their defined values from ranges specified in the previous Section II. This is our initial investigation and this program version is realized in Excel. Some of input parameters could not be selected in the whole specified range according to the data from the Section II. There are three such parameters: the number of rotors is limited to 4 (thus covering the great majority of applied drones), the blade length is limited to 25.4cm (the most drones do not have longer blades according to the presented examples from literature) and the rotor angular rate is limited to about 40 RPS (its usual value is in the range 30–40 RPS [11, 40]).

IV. THE RESULTS OF CALCULATION

Figures 3-12 present micro-Doppler signature graphs obtained by the implementation of our program. In all these cases it is considered that a drone has four rotors (N=4) and that it is positioned at a distance R=100m. The parameters which are varied are: 1) the number of blades constituting each rotor (N=3 in the figures 4, 5, 6, 7 and 9, N=2 in the remaining figures); 2) the length of blades (L=0.12m in the Fig. 5, L=0.18m in the Fig. 6, L=0.24m in remaining figures); 3) rotor angular rotation rate (Ω=20RPS in the figures 9 and 10, Ω=40RPS in the figures 7 and 8, Ω=30RPS in the remaining figures) and 4) the elevation angle i.e. the drone height over ground (z=77m in the Fig. 11, z=94.8m in the Fig. 12, z=30m in the remaining figures). The frequency division 0-200Hz on the vertical axis of spectrograms is not the absolute value of Doppler shift for the applied 24GHz radar. It is a consequence of frequency bandwidth compression when STFT is calculated and it approximately corresponds to the compression factor 20.

The legends on the right side of figures 3-12 present the signal level (in dB) at the corresponding figure. The frequency components with the higher level in the range between -20dB and +10dB (which are presented in the brown, red and orange colour) are important for the spectrogram analysis. The other components are of lower or significantly lower level and are not important for consideration. The transition between the part of the graph with the higher frequencies level and the part of the frequencies with the low signal level (lower than -40dB which is presented by turquoise, blue and pink colour) is on all graphs rather sharp. The bandwidth of the area in brown, red and orange colour depends on the value of some parameters for which the graphs are calculated.

![Fig. 3. Micro-Doppler signature of a drone with N=4, N_b=2, L=0.24m, R=100m, z=30m, Ω=30RPS](image3.png)

![Fig. 4. Micro-Doppler signature of a drone with N=4, N_b=3, L=0.24m, R=100m, z=30m, Ω=30RPS](image4.png)

![Fig. 5. Micro-Doppler signature of a drone with N=4, N_b=3, L=0.12m, R=100m, z=30m, Ω=30RPS](image5.png)

![Fig. 6. Micro-Doppler signature of a drone with N=4, N_b=3, L=0.18m, R=100m, z=30m, Ω=30RPS](image6.png)
This is a scientific document discussing micro-Doppler signatures of drones with varying rotor angular rotation rates and blade configurations. The text explains the influence of these parameters on the frequency bandwidth of the area with higher signal level, and how the ratio of the bandwidths changes with different configurations. The figures illustrate the micro-Doppler signatures under different conditions, showing how the frequency bands vary with the number of blades and rotor angular rotation rates.
It is possible to distinguish graphs for the drones which have rotors with two blades (figures 3, 8, 10, 11 and 12) from those which have three blades (the remaining five figures). The characteristics when there are 2 blades usually have clearly separated, periodic parts with the highest signal level between 0dB and +10dB (brown segments). The shape of these parts depends on the rotation starting angle. There are six such parts in the figures 3, 11 and 12, eight in the Fig. 8 and four in the Fig. 10. It means that the number of repeatable parts \(N_r\) when there are 2 blades may be expressed as
\[
N_r = N_p \cdot \Omega \cdot T_p
\]
where \(T_p\) is the time interval of spectrogram investigation.

When there are 3 blades such clear periodic parts may not be easily isolated.

V. READING THE PARAMETERS OF DRONE FLIGHT AND CONSTRUCTION FROM SPECTROGRAMS

In the Section IV it is investigated how the parameters of drone flight and of the drone construction affect its micro-Doppler signature appearance. Frequency bandwidth of the area with higher signal level depends on 3 parameters: blades’ length, rotors’ angular rotation rate and drone elevation angle. The spectrogram itself gives two values for the calculation. The first one is the frequency bandwidth of the area with higher signal level and the second one is the number of periodic areas with the highest signal level. So, it is necessary to determine one of the three parameters in some other way, not from spectrogram. The most logical is that this parameter is elevation angle \(\beta\) because it may be also determined by some algorithm implementation on FMCW radar [41], [42] (the concrete algorithm for this function is not studied in this paper).

In order to determine \(L\) and \(\Omega\) from some measured spectrogram let us start from the spectrogram from the Fig. 13, which is calculated for the same parameters as in the Fig. 3 with only the exception that it is \(z_0=0\)m, i.e. \(\cos(\beta)=1\). It follows from the graph in the Fig. 13 that it is now \(\Delta=148\)Hz. In this paper we have concluded that this value of \(\Delta\) is proportional to \(\Omega\) and \(L\). This statement may be expressed mathematically as
\[
K_m \cdot L \cdot \Omega = 148
\]

Our goal is to determine the value of multiplication coefficient \(K_m\).

VI. CONCLUSIONS

In this paper we have presented the initial development of a program for calculation and presentation of drones’ micro-Doppler spectrograms as well as some results of its implementation. The benefits of such program application are that it is not necessary to have a high number of different drones and to perform significant volume of recording during drones operation in order to form the base of their spectrograms. This program follows the analytical model from [29]. The initial modelling is limited to hovering drones whose rotors have equal angular rotation rate. A number of spectrograms with differently defined input parameters is presented in the paper. The method for determination of drone’s flight and construction characteristics is defined on the base of presented spectrograms. The number of blades in each rotor, rotors’ angular rotation rate and blades’ length, which contribute to specificities of spectrograms, may be concluded on the base of spectrograms appearance.

These initial calculations and presentations are performed in Excel as other, more suitable possibilities, were not available to us. Excel allows to perform good quality presentations of calculation results, as is also demonstrated in our contribution [43]. We plan to perform future investigations in some more powerful surrounding where it would be possible to model drone flying (besides hovering). It is also necessary to model drones with higher number of rotors (hexacopters, octocopters) as well as drone swarms to further improve drones DILC by FMCW radars.

FMCW radars are not the only way to obtain spectrograms as the ones presented in this paper. The similar results may be also obtained by using pulsed radar where the returned pulse delay is the measure of Doppler shift [13]. IRTEL already has experience in the development and improvements of such radars [21], [26]-[28]. In the case of single carrier radar the measure of Doppler shift would be the change of returned signal phase which is more complicate for realization.

REFERENCES

