
  

Abstract—This manuscript presents potentials for 

parallelizing simulation of simplicial complexes. The 

implementation of most important fields and methods of 

classes for storing simplicial complexes and k-simplices is 

followed by wrapper classes for simplicial complexes and k-

simplices respectively. Infrastructure for communication 

between Message Passing Interface (MPI) processes along with 

helper functions is explained further in the manuscript. Once 

multiple data are prepared to be sent from each MPI process 

to other MPI processes, sending and receiving is performed in 

the background. Because of the stall introduced by using MPI 

directives, the amount of data to be transmitted is maximized 

by processing multiple operations over simplicial complexes in 

parallel. This requires the method for locking simplicial 

complexes and k-simplices by the owner MPI process until all 

the requests are processed. Locking mechanism and supporting 

simplicial complex class actions regarding locking is not in the 

scope of this manuscript. 

 
Index Terms—Simplicial complex; k-simplex; triangulation; 

manifold; MPI; parallelization.  

 

I. INTRODUCTION 

In modern theoretical physics, a lot of problems are too 

complicated for study using analytical methods, and one 

needs to resort to numerical techniques. Among those 

problems, an especially important class deals with 

evaluation of functions over simplicial complexes. A 

simplicial complex [1] is a piecewise-linear approximation 

of a smooth spacetime manifold [2] and is typically 4-

dimensional or higher. Functions over a simplicial complex 

represent physical fields on spacetime, and one commonly 

employs path integral evaluations of such structures to 

extract expectation values of observables. For example, in 

Lattice Quantum Chromo-dynamics, one employs such 

numerical techniques to predict the theoretical values for the 

masses of elementary particles called hadrons [3]. Also, in 

Causal Dynamical Triangulations approach to quantum 

gravity [4,5], one uses these techniques to evaluate spectral 

dimension of spacetime, and study various properties of 

phase space of triangulated manifolds. Finally, in the Regge 

Quantum Gravity approach [6,7,8] one can study the 

entanglement properties of matter fields and gravity 

described by the Hartle-Hawking wavefunction [9,10], again 

using the techniques of numerical evaluation of path 
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integrals over simplicial complexes. 

It goes without saying that all such calculations are 

exceptionally expensive in computation time. Typically, one 

develops custom-made code, heavily optimized to solve 

precisely one specific problem, and executes it over months-

long periods on hardware dedicated for high performance 

computing (HPC), usually clusters with thousands of work 

nodes. Such enormous calculational efforts are usually 

unavoidable due to the nature of the problems that need to 

be solved. 

Nevertheless, at least for one class of such problems, it 

may be possible to construct a more general algorithm and 

structures which would provide a common basis for solving 

an all-encompassing class of problems using the same 

underlying software, while intrinsically exploiting the 

parallelization possibilities of the code itself and the 

distributed nature of the underlying hardware. Our aim is to 

develop such a generic software library, which could be 

used to solve a whole host of physics problems in the same 

way and optimize it for parallelized HPC environments. In 

this work we present the first steps towards the construction 

of such a library. This approach of developing common 

code for a whole class of problems has not been attempted 

so far because research teams are usually concentrated on 

solving only one specific problem and opt to construct 

custom code for that problem. However, in our opinion, a 

generic software library, which would provide support for a 

whole class of problems simultaneously, would open new 

avenues for numerical research, since one could use the 

same code to study new, yet unexplored problems as well as 

old well-known ones. 

 

 
 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 1. Simplicial complex of a torus (source: Wikipedia). 

 

The fundamental structure which lies at the core of the 

whole numerical method is the notion of a simplicial 

complex. A simplicial complex is a combinatorial structure 

which is easiest to understand as a generic lattice-like mesh, 
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whose cells are called simplices, and are connected to each 

other along their boundaries to form the simplicial complex 

of a given dimension. The purpose of the whole structure is 

to approximate the smooth spacetime manifold with a 

discrete structure which is more convenient for numerical 

methods. 

 The most elementary simplex is a simplex of level zero, 

often called 0-simplex or vertex – it is just a dimensionless 

point with no structure. Next is the 1-simplex, also called an 

edge – it is a one-dimensional line with two vertices at its 

boundaries. At level two we have the 2-simplex or triangle, 

whose boundary are three edges and their vertices. The 3-

simplex, also known as the tetrahedron, has the boundary 

made of four triangles and their edges and vertices. The 

procedure of constructing simplices can be done for 

arbitrary dimension, giving rise to the notion of a k-simplex, 

whose level (i.e. natural dimension of space in which it is 

defined) is equal to any positive integer k. The most 

commonly used example is the 4-simplex, also called 

pentachoron – a 4-dimensional figure whose boundary 

consists of 5 tetrahedra, 10 triangles, 10 edges and 5 

vertices. In most applications in physics, the spacetime 

manifold is considered to be 4-dimensional, and it is cut into 

a lattice-like structure made of 4-simplices, which are glued 

together along their boundary tetrahedra. The resulting 

structure is a simplicial complex of dimension 4. Fig. 1 

depicts an intuitive example of a 2-dimensional simplicial 

complex of a torus. 

Given a simplicial complex, one typically wants to 

introduce functions that are evaluated on it. These are 

commonly called colors and are assigned via their values to 

each k-simplex within in the complex. In other words, some 

colors live on vertices, some on edges, some on triangles, 

and so on. The colors are a natural discretization of the 

notion of a field over a manifold. For example, just like 

electric and magnetic fields have a value at each point of a 

smooth spacetime, analogously the colors have values at 

each k-simplex in the simplicial complex. 

Depending on the type of the problem at hand, algorithms 

that are used to evaluate required quantities on a simplicial 

complex can vary in complexity, from conceptually simple 

Monte Carlo integration techniques, to vastly complicated 

traversal and ray-tracing algorithms, to various methods for 

solving functional partial differential equations. Due to the 

variability of the complexity of all these algorithms, dictated 

by the nature of the problem at hand, it is helpful to develop 

the underlying software simulator to exploit the 

parallelization avenues that are intrinsic to the simplicial 

complexes and k-simplices themselves, so that the simulator 

can exploit parallel hardware environments even for 

algorithms that are themselves hard to parallelize. This helps 

the code developer with overall optimization and application 

to HPC hardware architectures. In what follows, we shall 

demonstrate a set of possible approaches to these intrinsic 

parallelization techniques. 

II. N-DIMENSIONAL SIMPLICIAL COMPLEXES 

This section describes data structures used in the 

simulator of simplicial complexes from the point of view of 

their suitability for parallelizing the simulator execution. 

Data demanding structures are of main interest for 

optimizing the communication between processing units. 

Along with those, data that describes the structure and needs 

to be updated on multiple processing units will be described 

in detail. Further, the amount of data that needs to be 

exchanged and the frequency of expected changes will be 

compared to the pyramid, where top elements demand less 

memory, but require more often communication. 

The parallelization is simulated using the MPI 

framework. The simulator is implemented in C++, and, as a 

result, the parallelization framework is built on top of the 

simulator. As improving the simulator of simplicial 

complexes is an ongoing process, the possibility for 

accelerating the computation is simulated based on the 

requirements. 

Simplicial complexes are formed out of k-simplices at 

various levels. Simplicial complexes at level zero represent 

vertices. The structure of each vertex is stored in KSimplex 

class. Simplicial complexes at level one represent edges. 

Each edge consists of two vertices. As it is the case with 

vertices, information about edges are also kept in a 

KSimplex class. However, while vertices can be independent 

of other vertices, representing separate simplicial 

complexes, each edge must have at least two vertices 

defined as neighbors. Neighbor of an k-simplex is defined 

also as a k-simplex that the first k-simplex relies on. 

Neighboring relation is symmetrical. Therefore, if two 

vertices are neighbors of an edge, edge is also the neighbor 

of both vertices. Further, edges can form a triangle. By 

analogy, neighbors of triangle are three edges, but also the 

triangle is neighbor of these edges. The neighboring relation 

spans more than one level up or down. The triangle has also 

three vertices as neighbors and the opposite. 

Simplicial complex representing a triangle consists of a k-

simplex representing a triangle along with all neighbors of 

the triangle. Simplicial complex class is used for storing 

information about simplicial complexes. As it has elements 

field that is a pointer to pointer of k-simplices, it is also used 

for keeping neighbors of each k-simplex. 

III. PARALLELIZING SIMPLICIAL COMPLEXES SIMULATION 

Parallelizing operations over simplicial complexes is 

implemented by splitting the structure over multiple MPI 

processes. First, we can consider a single simplicial complex 

system, as the most general approach. If no screen 

coordinates for k-simplices are assigned, we can artificially 

assign this type of color, so that we can present k-simplices 

in 2D space. Further, we can imagine multiple planes, where 

each plane is responsible for keeping k-simplices of one 

dimension. This way, we can consider n-dimensional 

simplicial complex as a pyramid that we observe from the 

bird's eye view. Now we could have a bottom-up approach, 

where k-simplices of dimension zero are divided onto MPI 

processes based on their screen coordinates. Going up, each 

MPI process would store higher dimensional k-simplices 

that have those that are one level below as their neighbors. 

When a k-simplex has neighbors on one level below that 

belong to multiple MPI processes, this k-simplex gets 

copied to all MPI processes involved. Finally, all MPI 

processes would keep the highest-level k-simplex. In the 

case of multiple simplicial complexes, they could be split 

over MPI processes based on the same bottom-up approach. 
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The notion of determining the MPI process where a k-

simplex is located is hidden by using wrapper functions, so 

that the calculation operations are performed as if all k-

simplices would have been on the same MPI process, i.e. as 

if the simulation was executed serially. Each wrapper 

function can keep either a pointer to the structure, if it exists 

on the same MPI process, and the ID used for finding the 

structure on the owner MPI process. 

Algorithm 1 describes the most important aspects of 

simplicial complex classes. First, a basic SimpComp class is 

given, followed by the wrapper class VirtualSimpComp used 

for parallelization. 

 

Algorithm 1: Declaration of simplicial complex classes. 

class SimpComp{ 

public: 
    SimpComp(int dim); 
    SimpComp(string s, int dim); 

    ~SimpComp(); 
    // Creating new KSimplex 

    // at level k: 
    VirtualKSimplex* create_ksimplex( 
        int k); 

    void update_owner(int owner); 
 

    string name; 
    int D; 
    vector< vector< 

        VirtualKSimplex *> > elements; 
}; 

class VirtualSimpComp{ 
public: 
    SimpComp *find_simpcomp; 

 
    int id; 
    int ownerRank; 
    SimpComp *simpComp; 

}; 

 

Algorithm 2 describes the most important aspects of k-

simplices classes. A basic KSimplex class is followed by the 

wrapper class VirtualKSimplex used for parallelization. 

 

Algorithm 2: Declaration of k-simplex classes. 

class KSimplex{ 
public: 

    KSimplex(); 
    KSimplex(int k, int D); 

    ~KSimplex(); 
    bool find_neighbor( 
            VirtualKSimplex *k1); 

    void add_neighbor( 
            VirtualKSimplex *k1);     

 

    int k; // level 
    int D; // dimension 

    VirtualSimpComp *neighbors; 
    vector<Color *> colors; 

}; 
class VirtualKSimplex{ 
public: 

    KSimplex *find_ksimplex(); 

 
    int id; 

    int ownerRank; 
    KSimplex *ksimplex; 

}; 

 

In both algorithms, wrapper functions store a pointer to 

the base class object, if such exists on a local MPI process. 

Otherwise, the value is nullptr, and the data is searched for 

on the so called ownerRank based on unique identifier called 

id. Owner of this k-simplex can issue multiple requests 

while it holds a lock. 

IV. INFRASTRUCTURE FOR COMMUNICATION BETWEEN MPI 

PROCESSES 

The communication between MPI processes is organized 

as follows. Each MPI process is preparing the data to be sent 

to other MPI processes. Order of operations prepared for 

other MPI processes is not important. All requests to other 

MPI processes for processing are packed in to_rank vector 

of vectors of unsigned char. 

Each type of primitive data is serialized into the array of 

unsigned characters as it will be explained in the following 

section. Each prepared byte is pushed to the back of the 

vector of unsigned characters. Once all the data is prepared, 

the data is sent to other MPI processes in the background 

using MPI_Isend directive. If a reference to the vector of 

array of unsigned characters is called vec, the pointer to the 

array is obtained by calling member function data() of 

vector class from standard template library. After issuing all 

MPI_Isend directives, waiting for each of sending to finish 

is achieved using MPI_Wait. 

Similarly receiving the data from other MPI processes is 

implemented in the background using MPI_Irecv, followed 

by MPI_Wait, once the data is needed for the processing. 

The data is received into array of unsigned characters, that is 

further packed into vector of vectors of unsigned characters 

called from_rank for simple processing. 

V. MPI SUPPORTING FUNCTIONS 

As already mentioned, variables are serialized into the 

array of unsigned characters using the following syntax: 

 

*( (__typeof__ (variable) *) (array + nArray) ) = variable; 

nArray += sizeof(variable); 

 

Here, array is array of unsinged characters where the data 

stored in the variable is serialized, and nArray is the number 

serialized bytes in the array. 

Similarly, a variable is read and prepared into the to_rank 

using the following syntax: 

 

__typeof__ (variable) temp_var = variable; \ 

int nBytes = sizeof(temp_var); \ 

for(int iByte = 0; iByte < nBytes; iByte++) \ 

    to_rank[rankNumber].push_back( 

            ((unsigned char *) &temp_var) [iByte] );  

 

This can be further optimized, but the optimization is out 

of the scope of this research. 
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The communication between MPI processes is continued 

for as long as any MPI process requires further 

communication with other MPI processes. This is achieved 

using the following source code, where the MPI process that 

requires further communication sets variable to_send to one: 

 

int to_receive = 0; // A rank required communication 

MPI_Allreduce(&to_send, &to_receive, 1, MPI_INT, 

        MPI_SUM, MPI_COMM_WORLD); 

 

After  MPI_Allreduce is executed, all MPI processes will 

have the information whether they have to communicate 

further in to_receive variable. 

 

VI. PARALLELIZATION POSSIBILITIES  USING DATAFLOW 

PARADIGM 

This simulator issues the same set of computer 

architecture instructions repeatedly. As in majority simulator 

of physical phenomena, the number of instructions is 

dependent on the precision of the model and is limited by 

the computing resources and the total simulation time 

requirement. These conditions are exactly what is required 

for a program to be suitable for acceleration using the 

dataflow paradigm [11]. Programming dataflow 

architectures requires programming skills that are higher 

than those needed for programming conventional von 

Neumann architectures. One of the possibilities is to write a 

program in a VHDL. More suitable solution to most of the 

programmers would be to exploit the framework that 

enables writing source code in a Java-like language, which 

gets automatically translated into the FPGA image [12,13]. 

Even in this case, the effort needed for programming such 

architectures is higher [14]. Besides programming dataflow 

architecture for the simplicial complex simulator, 

appropriate scheduling scheme is also needed for efficient 

running of multiple jobs simultaneously [15]. 

As the number of operations that can be applied to 

simplicial complexes can lead to several days’ simulation 

time or even more, having in mind the aging and the 

probability of failure of supercomputing nodes [16], we 

have decided to write restarts after given number of 

simulations defined by the user, so that the calculation can 

continue from the last stored state. 

VII. CONCLUSION 

In this work we have presented the basics of the 

paralellization techniques that can be applied to the structure 

of a simplicial complex, which underlies a host of research 

problems in theoretical physics (see also our accompanying 

paper [17]). These problems tend to be computationally 

extremely expensive, and the common underlying software 

that enables parallelization at the level of the basic data 

structure can possibly go a long way towards optimization 

of code for numerical study using heavily parallel hardware 

platforms such as HPC clusters. In particular, the simplicial 

complex naturally allows for various aspects of 

parallelization, and we have described the basic classes, 

corresponding MPI communication infrastructure, 

supporting functions and the dataflow paradigm employed 

for the construction. 

 One should note that our work represents just a first step 

towards a full working software implementation, and much 

more effort is needed to properly implement, optimize and 

test the resulting code in real world environments. All that is 

the topic for future work. In particular, the data regarding 

the experimental evaluation, which would compare the 

proposed parallelization method to ordinary sequential 

methods still needs to be gathered and analyzed. 

Nevertheless, this first step is fundamental, and it is 

conceptually important since it represents a paradigm in 

which parallelization is implemented dominantly at the level 

of the simplicial complex as the underlying data structure, 

rather than at the level of the particular algorithm that aims 

to solve some particular problem using these data structures. 

Finally, we note that our code, once properly developed, 

may possibly find applications not just in theoretical 

physics, but also in other disciplines of science, technology 

and engineering. 
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