

Abstract—This manuscript presents potentials for

parallelizing simulation of simplicial complexes. The

implementation of most important fields and methods of

classes for storing simplicial complexes and k-simplices is

followed by wrapper classes for simplicial complexes and k-

simplices respectively. Infrastructure for communication

between Message Passing Interface (MPI) processes along with

helper functions is explained further in the manuscript. Once

multiple data are prepared to be sent from each MPI process

to other MPI processes, sending and receiving is performed in

the background. Because of the stall introduced by using MPI

directives, the amount of data to be transmitted is maximized

by processing multiple operations over simplicial complexes in

parallel. This requires the method for locking simplicial

complexes and k-simplices by the owner MPI process until all

the requests are processed. Locking mechanism and supporting

simplicial complex class actions regarding locking is not in the

scope of this manuscript.

Index Terms—Simplicial complex; k-simplex; triangulation;

manifold; MPI; parallelization.

I. INTRODUCTION

In modern theoretical physics, a lot of problems are too

complicated for study using analytical methods, and one

needs to resort to numerical techniques. Among those

problems, an especially important class deals with

evaluation of functions over simplicial complexes. A

simplicial complex [1] is a piecewise-linear approximation

of a smooth spacetime manifold [2] and is typically 4-

dimensional or higher. Functions over a simplicial complex

represent physical fields on spacetime, and one commonly

employs path integral evaluations of such structures to

extract expectation values of observables. For example, in

Lattice Quantum Chromo-dynamics, one employs such

numerical techniques to predict the theoretical values for the

masses of elementary particles called hadrons [3]. Also, in

Causal Dynamical Triangulations approach to quantum

gravity [4,5], one uses these techniques to evaluate spectral

dimension of spacetime, and study various properties of

phase space of triangulated manifolds. Finally, in the Regge

Quantum Gravity approach [6,7,8] one can study the

entanglement properties of matter fields and gravity

described by the Hartle-Hawking wavefunction [9,10], again

using the techniques of numerical evaluation of path

Dušan Cvijetić is a student of the School of Electrical Engineering,

University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade,
Serbia (e-mail: dusancvijetic2000 @ gmail.com).

Nenad Korolija is with the School of Electrical Engineering, University

of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
nenadko @ etf.bg.ac.rs).

Marko Vojinović is with the Institute of Physics, University of Belgrade,

Pregrevica 118, 11080 Pregrevica, Serbia (e-mail: vmarko @ ipb.ac.rs).

integrals over simplicial complexes.

It goes without saying that all such calculations are

exceptionally expensive in computation time. Typically, one

develops custom-made code, heavily optimized to solve

precisely one specific problem, and executes it over months-

long periods on hardware dedicated for high performance

computing (HPC), usually clusters with thousands of work

nodes. Such enormous calculational efforts are usually

unavoidable due to the nature of the problems that need to

be solved.

Nevertheless, at least for one class of such problems, it

may be possible to construct a more general algorithm and

structures which would provide a common basis for solving

an all-encompassing class of problems using the same

underlying software, while intrinsically exploiting the

parallelization possibilities of the code itself and the

distributed nature of the underlying hardware. Our aim is to

develop such a generic software library, which could be

used to solve a whole host of physics problems in the same

way and optimize it for parallelized HPC environments. In

this work we present the first steps towards the construction

of such a library. This approach of developing common

code for a whole class of problems has not been attempted

so far because research teams are usually concentrated on

solving only one specific problem and opt to construct

custom code for that problem. However, in our opinion, a

generic software library, which would provide support for a

whole class of problems simultaneously, would open new

avenues for numerical research, since one could use the

same code to study new, yet unexplored problems as well as

old well-known ones.

Fig. 1. Simplicial complex of a torus (source: Wikipedia).

The fundamental structure which lies at the core of the

whole numerical method is the notion of a simplicial

complex. A simplicial complex is a combinatorial structure

which is easiest to understand as a generic lattice-like mesh,

Possibilities for Parallelizing Simplicial

Complexes Simulation

Dušan Cvijetić, Nenad Korolija, and Marko Vojinović

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.2 - Page 1 of 5 ISBN 978-86-7466-930-3

whose cells are called simplices, and are connected to each

other along their boundaries to form the simplicial complex

of a given dimension. The purpose of the whole structure is

to approximate the smooth spacetime manifold with a

discrete structure which is more convenient for numerical

methods.

 The most elementary simplex is a simplex of level zero,

often called 0-simplex or vertex – it is just a dimensionless

point with no structure. Next is the 1-simplex, also called an

edge – it is a one-dimensional line with two vertices at its

boundaries. At level two we have the 2-simplex or triangle,

whose boundary are three edges and their vertices. The 3-

simplex, also known as the tetrahedron, has the boundary

made of four triangles and their edges and vertices. The

procedure of constructing simplices can be done for

arbitrary dimension, giving rise to the notion of a k-simplex,

whose level (i.e. natural dimension of space in which it is

defined) is equal to any positive integer k. The most

commonly used example is the 4-simplex, also called

pentachoron – a 4-dimensional figure whose boundary

consists of 5 tetrahedra, 10 triangles, 10 edges and 5

vertices. In most applications in physics, the spacetime

manifold is considered to be 4-dimensional, and it is cut into

a lattice-like structure made of 4-simplices, which are glued

together along their boundary tetrahedra. The resulting

structure is a simplicial complex of dimension 4. Fig. 1

depicts an intuitive example of a 2-dimensional simplicial

complex of a torus.

Given a simplicial complex, one typically wants to

introduce functions that are evaluated on it. These are

commonly called colors and are assigned via their values to

each k-simplex within in the complex. In other words, some

colors live on vertices, some on edges, some on triangles,

and so on. The colors are a natural discretization of the

notion of a field over a manifold. For example, just like

electric and magnetic fields have a value at each point of a

smooth spacetime, analogously the colors have values at

each k-simplex in the simplicial complex.

Depending on the type of the problem at hand, algorithms

that are used to evaluate required quantities on a simplicial

complex can vary in complexity, from conceptually simple

Monte Carlo integration techniques, to vastly complicated

traversal and ray-tracing algorithms, to various methods for

solving functional partial differential equations. Due to the

variability of the complexity of all these algorithms, dictated

by the nature of the problem at hand, it is helpful to develop

the underlying software simulator to exploit the

parallelization avenues that are intrinsic to the simplicial

complexes and k-simplices themselves, so that the simulator

can exploit parallel hardware environments even for

algorithms that are themselves hard to parallelize. This helps

the code developer with overall optimization and application

to HPC hardware architectures. In what follows, we shall

demonstrate a set of possible approaches to these intrinsic

parallelization techniques.

II. N-DIMENSIONAL SIMPLICIAL COMPLEXES

This section describes data structures used in the

simulator of simplicial complexes from the point of view of

their suitability for parallelizing the simulator execution.

Data demanding structures are of main interest for

optimizing the communication between processing units.

Along with those, data that describes the structure and needs

to be updated on multiple processing units will be described

in detail. Further, the amount of data that needs to be

exchanged and the frequency of expected changes will be

compared to the pyramid, where top elements demand less

memory, but require more often communication.

The parallelization is simulated using the MPI

framework. The simulator is implemented in C++, and, as a

result, the parallelization framework is built on top of the

simulator. As improving the simulator of simplicial

complexes is an ongoing process, the possibility for

accelerating the computation is simulated based on the

requirements.

Simplicial complexes are formed out of k-simplices at

various levels. Simplicial complexes at level zero represent

vertices. The structure of each vertex is stored in KSimplex

class. Simplicial complexes at level one represent edges.

Each edge consists of two vertices. As it is the case with

vertices, information about edges are also kept in a

KSimplex class. However, while vertices can be independent

of other vertices, representing separate simplicial

complexes, each edge must have at least two vertices

defined as neighbors. Neighbor of an k-simplex is defined

also as a k-simplex that the first k-simplex relies on.

Neighboring relation is symmetrical. Therefore, if two

vertices are neighbors of an edge, edge is also the neighbor

of both vertices. Further, edges can form a triangle. By

analogy, neighbors of triangle are three edges, but also the

triangle is neighbor of these edges. The neighboring relation

spans more than one level up or down. The triangle has also

three vertices as neighbors and the opposite.

Simplicial complex representing a triangle consists of a k-

simplex representing a triangle along with all neighbors of

the triangle. Simplicial complex class is used for storing

information about simplicial complexes. As it has elements

field that is a pointer to pointer of k-simplices, it is also used

for keeping neighbors of each k-simplex.

III. PARALLELIZING SIMPLICIAL COMPLEXES SIMULATION

Parallelizing operations over simplicial complexes is

implemented by splitting the structure over multiple MPI

processes. First, we can consider a single simplicial complex

system, as the most general approach. If no screen

coordinates for k-simplices are assigned, we can artificially

assign this type of color, so that we can present k-simplices

in 2D space. Further, we can imagine multiple planes, where

each plane is responsible for keeping k-simplices of one

dimension. This way, we can consider n-dimensional

simplicial complex as a pyramid that we observe from the

bird's eye view. Now we could have a bottom-up approach,

where k-simplices of dimension zero are divided onto MPI

processes based on their screen coordinates. Going up, each

MPI process would store higher dimensional k-simplices

that have those that are one level below as their neighbors.

When a k-simplex has neighbors on one level below that

belong to multiple MPI processes, this k-simplex gets

copied to all MPI processes involved. Finally, all MPI

processes would keep the highest-level k-simplex. In the

case of multiple simplicial complexes, they could be split

over MPI processes based on the same bottom-up approach.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.2 - Page 2 of 5 ISBN 978-86-7466-930-3

The notion of determining the MPI process where a k-

simplex is located is hidden by using wrapper functions, so

that the calculation operations are performed as if all k-

simplices would have been on the same MPI process, i.e. as

if the simulation was executed serially. Each wrapper

function can keep either a pointer to the structure, if it exists

on the same MPI process, and the ID used for finding the

structure on the owner MPI process.

Algorithm 1 describes the most important aspects of

simplicial complex classes. First, a basic SimpComp class is

given, followed by the wrapper class VirtualSimpComp used

for parallelization.

Algorithm 1: Declaration of simplicial complex classes.

class SimpComp{

public:
 SimpComp(int dim);
 SimpComp(string s, int dim);

 ~SimpComp();
 // Creating new KSimplex

 // at level k:
 VirtualKSimplex* create_ksimplex(
 int k);

 void update_owner(int owner);

 string name;
 int D;
 vector< vector<

 VirtualKSimplex *> > elements;
};

class VirtualSimpComp{
public:
 SimpComp *find_simpcomp;

 int id;
 int ownerRank;
 SimpComp *simpComp;

};

Algorithm 2 describes the most important aspects of k-

simplices classes. A basic KSimplex class is followed by the

wrapper class VirtualKSimplex used for parallelization.

Algorithm 2: Declaration of k-simplex classes.

class KSimplex{
public:

 KSimplex();
 KSimplex(int k, int D);

 ~KSimplex();
 bool find_neighbor(
 VirtualKSimplex *k1);

 void add_neighbor(
 VirtualKSimplex *k1);

 int k; // level
 int D; // dimension

 VirtualSimpComp *neighbors;
 vector<Color *> colors;

};
class VirtualKSimplex{
public:

 KSimplex *find_ksimplex();

 int id;

 int ownerRank;
 KSimplex *ksimplex;

};

In both algorithms, wrapper functions store a pointer to

the base class object, if such exists on a local MPI process.

Otherwise, the value is nullptr, and the data is searched for

on the so called ownerRank based on unique identifier called

id. Owner of this k-simplex can issue multiple requests

while it holds a lock.

IV. INFRASTRUCTURE FOR COMMUNICATION BETWEEN MPI

PROCESSES

The communication between MPI processes is organized

as follows. Each MPI process is preparing the data to be sent

to other MPI processes. Order of operations prepared for

other MPI processes is not important. All requests to other

MPI processes for processing are packed in to_rank vector

of vectors of unsigned char.

Each type of primitive data is serialized into the array of

unsigned characters as it will be explained in the following

section. Each prepared byte is pushed to the back of the

vector of unsigned characters. Once all the data is prepared,

the data is sent to other MPI processes in the background

using MPI_Isend directive. If a reference to the vector of

array of unsigned characters is called vec, the pointer to the

array is obtained by calling member function data() of

vector class from standard template library. After issuing all

MPI_Isend directives, waiting for each of sending to finish

is achieved using MPI_Wait.

Similarly receiving the data from other MPI processes is

implemented in the background using MPI_Irecv, followed

by MPI_Wait, once the data is needed for the processing.

The data is received into array of unsigned characters, that is

further packed into vector of vectors of unsigned characters

called from_rank for simple processing.

V. MPI SUPPORTING FUNCTIONS

As already mentioned, variables are serialized into the

array of unsigned characters using the following syntax:

*((__typeof__ (variable) *) (array + nArray)) = variable;

nArray += sizeof(variable);

Here, array is array of unsinged characters where the data

stored in the variable is serialized, and nArray is the number

serialized bytes in the array.

Similarly, a variable is read and prepared into the to_rank

using the following syntax:

__typeof__ (variable) temp_var = variable; \

int nBytes = sizeof(temp_var); \

for(int iByte = 0; iByte < nBytes; iByte++) \

 to_rank[rankNumber].push_back(

 ((unsigned char *) &temp_var) [iByte]);

This can be further optimized, but the optimization is out

of the scope of this research.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.2 - Page 3 of 5 ISBN 978-86-7466-930-3

The communication between MPI processes is continued

for as long as any MPI process requires further

communication with other MPI processes. This is achieved

using the following source code, where the MPI process that

requires further communication sets variable to_send to one:

int to_receive = 0; // A rank required communication

MPI_Allreduce(&to_send, &to_receive, 1, MPI_INT,

 MPI_SUM, MPI_COMM_WORLD);

After MPI_Allreduce is executed, all MPI processes will

have the information whether they have to communicate

further in to_receive variable.

VI. PARALLELIZATION POSSIBILITIES USING DATAFLOW

PARADIGM

This simulator issues the same set of computer

architecture instructions repeatedly. As in majority simulator

of physical phenomena, the number of instructions is

dependent on the precision of the model and is limited by

the computing resources and the total simulation time

requirement. These conditions are exactly what is required

for a program to be suitable for acceleration using the

dataflow paradigm [11]. Programming dataflow

architectures requires programming skills that are higher

than those needed for programming conventional von

Neumann architectures. One of the possibilities is to write a

program in a VHDL. More suitable solution to most of the

programmers would be to exploit the framework that

enables writing source code in a Java-like language, which

gets automatically translated into the FPGA image [12,13].

Even in this case, the effort needed for programming such

architectures is higher [14]. Besides programming dataflow

architecture for the simplicial complex simulator,

appropriate scheduling scheme is also needed for efficient

running of multiple jobs simultaneously [15].

As the number of operations that can be applied to

simplicial complexes can lead to several days’ simulation

time or even more, having in mind the aging and the

probability of failure of supercomputing nodes [16], we

have decided to write restarts after given number of

simulations defined by the user, so that the calculation can

continue from the last stored state.

VII. CONCLUSION

In this work we have presented the basics of the

paralellization techniques that can be applied to the structure

of a simplicial complex, which underlies a host of research

problems in theoretical physics (see also our accompanying

paper [17]). These problems tend to be computationally

extremely expensive, and the common underlying software

that enables parallelization at the level of the basic data

structure can possibly go a long way towards optimization

of code for numerical study using heavily parallel hardware

platforms such as HPC clusters. In particular, the simplicial

complex naturally allows for various aspects of

parallelization, and we have described the basic classes,

corresponding MPI communication infrastructure,

supporting functions and the dataflow paradigm employed

for the construction.

 One should note that our work represents just a first step

towards a full working software implementation, and much

more effort is needed to properly implement, optimize and

test the resulting code in real world environments. All that is

the topic for future work. In particular, the data regarding

the experimental evaluation, which would compare the

proposed parallelization method to ordinary sequential

methods still needs to be gathered and analyzed.

Nevertheless, this first step is fundamental, and it is

conceptually important since it represents a paradigm in

which parallelization is implemented dominantly at the level

of the simplicial complex as the underlying data structure,

rather than at the level of the particular algorithm that aims

to solve some particular problem using these data structures.

Finally, we note that our code, once properly developed,

may possibly find applications not just in theoretical

physics, but also in other disciplines of science, technology

and engineering.

ACKNOWLEDGMENT

DC and NK were partially supported by the School of

Electrical Engineering, University of Belgrade, Serbia. NK

was partially supported by the Institute of Physics Belgrade,

contract no. 0801-1264/1. MV was supported by the Science

Fund of the Republic of Serbia, grant no. 7745968,

“Quantum gravity from higher gauge theory” – QGHG-

2021. All authors were partially supported by the Ministry

of Education, Science, and Technological Development of

the Republic of Serbia.

REFERENCES

[1] E. H. Spanier, Algebraic Topology, New York, USA: Springer

Verlag, 1966.

[2] M. W. Hirsch, Differential Topology, New York, USA: Springer
Verlag, 1976.

[3] S. Durr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S. D. Katz,

S. Krieg, T. Kurth, L. Lellouch, T. Lippert, K. K. Szabo and G.
Vulvert, “Ab-initio Determination of Light Hardon Masses”, Science

322, 1224-1227 (2008).

[4] J. Ambjorn, A. Goerlich, J. Jurkiewicz and R. Loll, “Nonperturbative
Quantum Gravity”, Phys. Rep. 519, 127 (2012).

[5] M. Vojinović, “Causal dynamical triangulations in the spincube

model of quantum gravity”, Phys. Rev. D 94, 024058 (2016).

[6] T. Radenković and M. Vojinović, “Higher Gauge Theories Based on

3-Groups”, JHEP 10, 222 (2019).

[7] A. Miković and M. Vojinović, “Standard Model and 4-Groups”,
Europhys. Lett. 133, 61001 (2021).

[8] A. Miković and M. Vojinović. “Quantum gravity for piecewise flat

spacetimes”, SFIN XXXI, 267 (2018).
[9] N. Paunković and M. Vojinović, “Gauge protected entanglement

between gravity and matter”, Class. Quant. Grav. 35, 185015 (2018).

[10] J. B. Hartle and S. W. Hawking, “Wave function of the Universe”,
Phys. Rev. D 28, 2960 (1983).

[11] B. Lee and A. R. Hurson, “Issues in dataflow computing,” Advances

in computers, Elsevier, 37, 285-333 (1993).
[12] V. Milutinovic, J. Salom, D. Veljovic, N. Korolija, D. Markovic, and

L. Petrovic, “Transforming applications from the control flow to the

dataflow paradigm,” Dataflow supercomputing essentials, Springer,
Cham, 107-129 (2017).

[13] N. Korolija, J. Popović, M. Cvetanović, and M. Bojović, “Dataflow-

based parallelization of control-flow algorithms,“ Advances in
computers, Elsevier, 104, 73-124 (2017).

[14] J. Popovic, D. Bojic, and N. Korolija, “Analysis of task effort

estimation accuracy based on use case point size,” IET Software, 9(6),
166-173 (2015).

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.2 - Page 4 of 5 ISBN 978-86-7466-930-3

[15] N. Korolija, D. Bojić, A. R. Hurson, and V. Milutinovic, “A runtime

job scheduling algorithm for cluster architectures with dataflow
accelerators,” Advances in computers, Elsevier, 126 (2022).

[16] K. Huang, Y. Liu, N. Korolija, J. M. Carulli, and Y. Makris,

“Recycled IC detection based on statistical methods,” IEEE
transactions on computer-aided design of integrated circuits and

systems, 34(6), 947-960 (2015).

[17] D. Cvijetić, N. Korolija and M. Vojinović, “Infrastructure for
Simulating n-Dimensional Simplicial Complexes,” IcETRAN 2022,

Novi Pazar, Republic of Serbia, June 6-9, 2022, Belgrade: Društvo za

ETRAN, Beograd: Akademska misao (2022).

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.2 - Page 5 of 5 ISBN 978-86-7466-930-3

