

Abstract—We present an infrastructure for simulating

simplicial complexes. The classes for storing the structure of

simplicial complexes and simplices are explained in detail, for

arbitrary dimension.

The implementation is tested using functions for seeding

simplicial complexes and for printing them on the screen. Beside

these functions, the supporting classes and the function for

assigning unique identifiers and screen coordinates is also

explained.

Results of simulation show that there are potentials for the

simulator to be used for big data problems, although appropriate

experimental results are still being collected. Future work

includes parallelizing the execution of the simulator using

supercomputing architectures.

Index Terms— Simplicial complex; triangulation; manifold;

algebraic topology.

I. INTRODUCTION

A manifold is one of the fundamental concepts in

mathematics [1], and its importance in applications in physics,

technology and engineering cannot be overstated. Virtually all

modern physics describes the world using field theory [2], in

which all physical quantities (fields) are represented as

functions over some manifold (for example, spacetime). In

technology, manifolds appear in all forms and guises,

whenever one needs to deal with curved surfaces --- from civil

engineering to graphics in video games.

While most of the interest in science and engineering

revolves around smooth manifolds, for the purpose of

studying manifolds using numerical techniques, the attention

focuses on the so called piecewise-linear manifolds [3], which

can intuitively be imagined as a structure made out of small

flat cells called simplices, arranged like bricks into a structure

which models a manifold. The procedure of approximating a

smooth manifold with a piecewise-linear one is commonly

called triangulation, see Fig. 1.

Within the framework of algebraic topology, the formal

mathematical structure which describes piecewise-linear

manifolds is called a simplicial complex. For the purpose of

this article, we provide an informal descriptive definition of a

Dušan Cvijetić is a student of the School of Electrical Engineering,
University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia

(e-mail: dusancvijetic2000 @ gmail.com).

Nenad Korolija is with the School of Electrical Engineering, University of
Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

nenadko @ etf.bg.ac.rs).

Marko Vojinović is with the Institute of Physics, University of Belgrade,
Pregrevica 118, 11080 Pregrevica, Serbia (e-mail: vmarko @ ipb.ac.rs).

simplicial complex, without mathematical rigour. A simplicial

complex is a combinatorial structure, containing the

information about simplices of various dimensions that make

up a complex, and the information about how simplices are

connected to each other. A k-simplex is an elementary

building block of a simplicial complex. It is an elementary

geometrical “cell” of dimension k, which is being used to

build simplices of higher dimension, and the entire simplicial

complex. For k = 0, the simplex is called a vertex, it is

represented geometrically as a single point, and has no

internal structure. The k = 1 simplex is called an edge,

geometrically represented as a single straight line, having two

vertices at its boundary. For k = 2, the simplex is a triangle,

having three boundary edges and three vertices. The case

k = 3 describes a tetrahedron, having four boundary triangles,

six edges and four vertices. One can go further into higher

dimensions: k = 4 represents a simplex called pentachoron – it

is a 4-dimensional figure, having five boundary tetrahedra, 10

triangles, 10 edges and five vertices. In general, one can

introduce a k-simplex for arbitrary dimension k, also called

level.

Fig. 1. Simplicial complex of a torus (source: Wikipedia).

Given a set of simplices, one can “glue them up” into a

bigger geometrical structure, called simplicial complex. In

order to describe a manifold of dimension D, a simplicial

complex is constructed by gluing a set of D-simplices by

identifying their common boundary (D-1)-simplices.

Naturally, this implies the identification of all corresponding

sub-simplices of level k < D-1 as well. The resulting

simplicial complex is homeomorphic to a piecewise-linear

manifold of dimension D.

The most important information about the simplicial

complex, aside from its dimension D, is the data that tells one

Infrastructure for Simulating n-Dimensional

Simplicial Complexes

Dušan Cvijetić, Nenad Korolija, and Marko Vojinović

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.1 - Page 1 of 5 ISBN 978-86-7466-930-3

which simplices are glued to which. This gives rise to a notion

of a neighborhood of a k-simplex, which is a set of all

simplices which contain a given simplex as its sub-simplex

(called super-neighbors) and simplices which are contained in

a given simplex (called sub-neighbors). Each k-simplex (for

0 ≤ k ≤ D) in the complex has its set of neighbors, where by

definition a simplex is not a neighbor of itself (this is

convenient to avoid infinite loops when traversing a

complex). The neighborhood structure of the entire complex

determines the topology of the corresponding manifold.

While manifolds of various topologies are important in

their own right in mathematics, the applications in physics and

engineering typically introduce functions over manifolds,

such as distances, areas and volumes, temperature, electric

and magnetic fields, etc. In the language of simplicial

complexes, these functions are commonly called colors, and

are assigned to simplices of various level k within the

complex. Given a k-simplex, one can assign to it multiple

colors, representing the value of a given function when

evaluated on the k-simplex. A prototype example of colors is

the geometry of a simplicial complex: each k-simplex is

assigned its “size” according to its geometry --- each 1-

simplex (an edge) is assigned a real number representing its

length, each 2-simplex (a triangle) is assigned a real number

representing its area, tetrahedra are assigned volumes, and so

on. Other examples are abound --- vertices can be assigned a

temperature, edges can be assigned vectors of electric field,

and so on. Depending on the problem at hand, one may or

may not impose relationships between various colors, such as

that the area of a triangle is consistent with the length of its

edges, or similar. These relationships are collectively called

constraints.

In most everyday applications, one is interested in

manifolds of dimension 1 and 2 (curves and surfaces).

However, within the context of theoretical physics, one often

needs to deal with manifolds of higher dimension – most

commonly 3, 4, 5, 10, 11 and 26, while more sporadically

anything in between and above. One of the typical scenarios is

quantum gravity [4,5], a vast research area of fundamental

theoretical physics, where the notion of spacetime is described

as a piecewise-linear manifold of dimension D=4 or higher

[6,7]. In order to apply numerical techniques to study the

manifolds in such research disciplines, it is necessary to

formulate and implement structures and algorithms which

describe colored simplicial complexes of arbitrarily large

dimension, in a uniform and optimal way. In what follows, we

describe one such implementation, which is purposefully

designed to mimic the mathematical structure of a simplicial

complex as close as possible, while simultaneously providing

efficient numerical techniques for the manipulation and study

of such structures.

I. N-DIMENSIONAL SIMPLICIAL COMPLEXES

This section describes the structure of simplicial

complexes, and explains an example C++ implementation of

classes for storing simplicial complexes.

Simplicial complexes consist of k-simplices at different

levels. Given a simplicial complexes of dimension D, these

elements include k-simplices for each level from zero to D.

Elements at level zero are vertices, elements at level one are

edges, elements on level two are triangles, etc. Finally, there

are elements of highest level D. The representative source

code of class for simplicial complexes is given in Algorithm 3

from the Appendix. The source code is pruned from

comments and unnecessary functionalities for the presentation

of the simulator.

K-simplex stores the level it has, the dimension of the

simplicial complex it belongs to, neighboring elements and

colors assigned to it.

Neighboring elements of a k-simplex are defined as k-

simplices that this k-simplex is touching. Since these can be

on various levels, the structure of neighbors is the same as for

the simplicial complex. Therefore, the two main classes are

mutually connected.

Printing SimpComp tetrahedron, D = 3

Simplices k = 0:

1, 2, 3, 4

Simplices k = 1:

(1-2), (1-3), (1-4), (2-4), (2-3), (3-4)

Simplices k = 2:

(1-2-3), (1-3-4), (1-2-4), (2-3-4)

Simplices k = 3:

(1-2-3-4)

Fig. 2. Tetrahedron and a corresponding output of the simplicial complexes

simulator.

One possible implementation of the neighboring elements

is to store only neighbors from one level above, and one level

beneath (first sub-neighbors and first super-neighbors). The

lower- and higher-level neighbors can be deduced following

the structure of the first neighbors. However, we have opted

for storing neighbors from all levels, giving us the opportunity

to divide the structure onto multiple computing nodes and run

the code in parallel. At current state, the simulator is running

on a single CPU.

The instructions a CPU is executing are repeated over and

over again, which makes this simulator suitable for

acceleration using the dataflow paradigm [8,9]. The effort

required for programming such architectures is higher than for

conventional von Neumann architectures [10], but the

simulator is suitable for transforming the C++ source code

automatically [11]. Executing multiple simplicial complex

operations in parallel requires appropriate scheduling

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.1 - Page 2 of 5 ISBN 978-86-7466-930-3

techniques [12].

Each k-simplex (including all vertices, edges, triangles,

etc.) can be colored with different types of color. Example

colors include:

- k-simplex name,

- unique identifier of k-simplex,

- boundary color of k-simplex,

- screen coordinates.

These colors are included in our simplicial complex

simulator, but the structure of the simulator allows adding

additional user defined colors.

The representative source code of the class for k-simplices

is given in Algorithm 4 from the Appendix. Just like it is the

case with simplicial complexes, this source code is pruned for

better clarity.

For simulation purposes, we have developed functions for

seeding simplicial complexes at various levels, as it will be

explained in the following section. In addition, coloring and

printing simplicial complexes is also implemented. Pretty

printing (or compact printing) prints k-simplices at all levels,

where k-simplices of level higher than zero are printed as

tuples consisting of unique identifiers (IDs) of their vertices.

Fig. 2 shows an example tetrahedron (i.e. simplicial complex

of dimension D = 3 consisting of a single 3-simplex and its

sub-simplices) whose vertices are colored with unique

identifiers that auto-increment after each assignment of the

unique color to a vertex. Details of the implementation of

compact printing is also explained in this manuscript.

Screen coordinates can be attached to vertices of the

tetrahedron. Therefore, it can be drawn on the screen.

However, there is no need to assign coordinates. They are just

a convenient way to show an object on a screen. Similarly,

there is no need to assign unique ID to any vertex. In the

previous example, if a vertex with unique ID four would not

have a unique ID assigned to it, the tetrahedron could still be

printed out, but with word “Simplex” being printed out in

place of number four.

II. SEEDING SIMPLICIAL COMPLEXES

This section describes seeding simplicial complexes using

C++ implementation of function seed_single_edge(). The

example source code for seeding a single edge is used for

demonstrating purposes.

The process of seeding simplicial complexes will be

explained using the source code shown in Algorithm 1. The

source code is pruned from comments and unnecessary

statements. Seeding a simplicial complex consists of the

following steps, and statements in Algorithm 1 follow the

same principle in the same order:

- creating an empty simplicial complex of given dimension,

- creating k-simplices for storing vertices and simplices of

higher levels,

- connecting vertices at each level with vertices on higher

and lower levels.

Adding a neighbor to a k-simplex is a symmetric operation.

This means that both k-simplices (the calling one and the one

given as an argument) are neighbors to each other. All

functions of the simulator are written in a robust manner,

checking the validity of input parameters.

Note that multiple colors can be assigned to each k-

simplex, which is left out of consideration in this algorithm

for better clarity.

III. COLORING AND PRETTY PRINTING K-SIMPLICES

This section describes coloring and pretty printing

simplicial complexes. These functions might work in pair, but

are not necessarily connected.

A. Coloring K-simplices

Coloring k-simplices will be explained using Algorithm 2

by coloring vertices of an edge with boundary colors. First,

vertices have to be created as k-simplices of level zero. Then,

colors have to be created for all vertices. Finally, colors need

to be pushed back to the vector of colors that each k-simplex

has.

Algorithm 1: Seeding a single edge.

SimpComp* seed_single_edge(string name){
 SimpComp *edge = new SimpComp(
 name, 1);

 KSimplex *v1 =
 edge->create_ksimplex(0);

 KSimplex *v2 =
 edge->create_ksimplex(0);
 KSimplex *e1 =

 edge->create_ksimplex(1);
 v1->add_neighbor(e1);

 v2->add_neighbor(e1);
 return edge;
}

Algorithm 2: Coloring vertices with boundary color.

KSimplex *v1 =

 edge->create_ksimplex(0);
KSimplex *v2 =

 edge->create_ksimplex(0);
Color *c1 = new BoundaryColor(true);
Color *c2 = new BoundaryColor(true);

v1->colors.push_back(c1);
v2->colors.push_back(c2);

Following colors are currently available:

- unique ID colors

- boundary colors

- screen coordinate colors.

Additionally, user is allowed to construct a custom color

and use it within the simulator. The source code of the

simulator is organized as a library, and user is allowed to

extend it by using the library.

Unique ID colors are predominantly used for pretty printing

simplicial complexes. They are implemented by a class

inherited from the basic color class. Two main fields include

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.1 - Page 3 of 5 ISBN 978-86-7466-930-3

static integer number, and an integer number. The first

represents the current maximum of a unique color ID that is in

use, and the second one is the color of a given k-simplex.

Unlike unique ID colors, boundary colors have special

meaning. Each k-simplex may contain boundary color, but it

does not have to. A simplicial complex can have boundaries

on k-simplices of one level lower than the dimension of the

simplicial complex. For example, a triangle can have edges as

boundaries.

Screen coordinate colors are used for drawing simplicial

complexes on a screen. The basic graphical user interface is

under development.

B. Pretty Printing K-simplices

Printing k-simplices includes printing of all of the fields

that KSimplex class contains. This includes printing all of the

neighborhood elements the k-simplex has. This is usually

overwhelming for a user. Therefore, pretty printing is

designed to print unique ID colors of each k-simplex in most

readable way authors could think of.

Function KSimplex::print_compact() is responsible for

pretty printing. It assigns to the pointer to the unique ID a

value returned by a function get_uniqueID() that returns either

nullptr if a k-simplex doesn’t have a unique ID, or a pointer to

the color.

If there is no unique ID color assigned to a k-simplex, the

output consists solely of word “Simplex”. Otherwise,

print_compact() function is called for a color that the pointer

points to. Further, the following procedure is repeated, if level

k is greater than zero and there are neighboring elements for

all neighbors. A set of integer values is constructed, and then

function print_vertices_in_parentheses(s) is called for

neighbors, adding unique IDs to the set. This way, printing

sorted values is achieved, along with avoiding duplicate

values. Sample output of a simplicial complex pretty printing

is shown in Fig. 1.

IV. CONCLUSION

We have demonstrated how one can implement in code the

structure of a simplicial complex of arbitrary dimension, in a

way that is faithful to its combinatorial definition, and

perform the most basic operations on it, like instantiating,

coloring and printing.

The implementation of the basic classes of the code

described in this work represents a fundamental basic building

block for a more versatile software collection that aims to

construct, manipulate and study the properties of simplicial

complexes of arbitrary dimension. Future extensions of the

software library will include the functions which implement

attaching additional simplices to a boundary of a complex,

performing Pachner moves [13] which transform a given

complex into a different one without changing its topology,

and functions for manipulating the colors and evaluating

various mathematical constructions that include them. Note

that the experimental data regarding the parallelization is yet

to be collected (see the accompanying paper [14]).

The resulting software collection will feature the generality

and versatility that aim for applications both in pure

mathematics (algebraic topology research) and theoretical

physics (quantum gravity, field theory), but also with potential

applications in other disciplines of engineering and industry,

wherever the analysis and the study of geometry of manifolds

and curved surfaces may be relevant.

APPENDIX

Algorithm 3: Declaration of SimpComp class.

class SimpComp{

public:
 SimpComp(int dim);

 SimpComp(string s, int dim);
 ~SimpComp();
 int count_number_of_simplexes(

 int level);
 void print(string space = "");

 bool all_uniqueID(int level);
 void collect_vertices(set<int> &s);
 void print_set(set<int> &s);

 void print_vertices_in_parentheses(
 set<int> &s);

 void print_compact();
 // Creating new KSimplex at level k:
 KSimplex* create_ksimplex(int k);

 void print_sizes();

 string name;
 int D;
 // An element at each level

 // is a list or vector
 // of KSimplex pointers

 // to KSimplex on that level:
 vector< vector<KSimplex *> >
 elements;

};

Algorithm 4: Declaration of KSimplex class.

class KSimplex{
public:

 KSimplex();
 KSimplex(int k, int D);

 ~KSimplex();
 bool find_neighbor(KSimplex *k1);
 void add_neighbor(KSimplex *k1);

 void print(string space = "");
 UniqueIDColor* get_uniqueID();

 void print_compact();

 int k; // level

 int D; // dimension
 SimpComp *neighbors;

 vector<Color *> colors;
};

ACKNOWLEDGMENT

DC and NK were partially supported by the School of

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.1 - Page 4 of 5 ISBN 978-86-7466-930-3

Electrical Engineering, University of Belgrade, Serbia. NK

was partially supported by the Institute of Physics Belgrade,

contract no. 0801-1264/1. MV was supported by the Science

Fund of the Republic of Serbia, grant no. 7745968, “Quantum

gravity from higher gauge theory” – QGHG-2021. All authors

were partially supported by the Ministry of Education,

Science, and Technological Development of the Republic of

Serbia.

REFERENCES

[1] M. W. Hirsch, Differential Topology, New York, USA: Springer Verlag,

1976.
[2] A. Hobson, “There are no particles, there are only fields”, Amer. Jour.

Phys. 81, 211-223 (2013).

[3] E. H. Spanier, Algebraic Topology, New York, USA: Springer Verlag,
1966.

[4] C. Rovelli, Quantum Gravity, Cambridge, UK: Cambridge University

Press, 2004.
[5] C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity,

Cambridge, UK: Cambridge University Press, 2014.

[6] T. Radenković and M. Vojinović, “Higher Gauge Theories Based on 3-

Groups”, JHEP 10, 222 (2019).

[7] A. Miković and M. Vojinović, “Standard Model and 4-Groups”,

Europhys. Lett. 133, 61001 (2021).

[8] B. Lee and A. R. Hurson, “Issues in dataflow computing,” Advances in
computers, Elsevier, 37, 285-333 (1993).

[9] V. Milutinovic, J. Salom, D. Veljovic, N. Korolija, D. Markovic, and L.

Petrovic, “Transforming applications from the control flow to the
dataflow paradigm,” Dataflow supercomputing essentials, Springer,

Cham, 107-129 (2017).

[10] J. Popovic, D. Bojic, and N. Korolija, “Analysis of task effort estimation
accuracy based on use case point size,” IET Software, 9(6), 166-173

(2015).

[11] N. Korolija, J. Popović, M. Cvetanović, and M. Bojović, “Dataflow-
based parallelization of control-flow algorithms,“ Advances in

computers, Elsevier, 104, 73-124 (2017).

[12] N. Korolija, D. Bojić, A. R. Hurson, and V. Milutinovic, “A runtime job
scheduling algorithm for cluster architectures with dataflow

accelerators,” Advances in computers, Elsevier, 126 (2022).

[13] U. Pachner, “PL homeomorphic manifolds are equivalent by elementary

shellings”, Eur. Jour. Combinat. 12, 129-145 (1991).

[14] D. Cvijetić, N. Korolija and M. Vojinović, “Possibilities for

Parallelizing Simplicial Complexes Simulation”, IcETRAN 2022, Novi
Pazar, Republic of Serbia, June 6-9, 2022, Belgrade: Društvo za

ETRAN, Beograd: Akademska misao (2022).

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.1 - Page 5 of 5 ISBN 978-86-7466-930-3

