
  

Abstract—We present an infrastructure for simulating 

simplicial complexes. The classes for storing the structure of 

simplicial complexes and simplices are explained in detail, for 

arbitrary dimension. 

The implementation is tested using functions for seeding 

simplicial complexes and for printing them on the screen. Beside 

these functions, the supporting classes and the function for 

assigning unique identifiers and screen coordinates is also 

explained. 

Results of simulation show that there are potentials for the 

simulator to be used for big data problems, although appropriate 

experimental results are still being collected. Future work 

includes parallelizing the execution of the simulator using 

supercomputing architectures.  

 
Index Terms— Simplicial complex; triangulation; manifold; 

algebraic topology.  

 

I. INTRODUCTION 

A manifold is one of the fundamental concepts in 

mathematics [1], and its importance in applications in physics, 

technology and engineering cannot be overstated. Virtually all 

modern physics describes the world using field theory [2], in 

which all physical quantities (fields) are represented as 

functions over some manifold (for example, spacetime). In 

technology, manifolds appear in all forms and guises, 

whenever one needs to deal with curved surfaces --- from civil 

engineering to graphics in video games. 

While most of the interest in science and engineering 

revolves around smooth manifolds, for the purpose of 

studying manifolds using numerical techniques, the attention 

focuses on the so called piecewise-linear manifolds [3], which 

can intuitively be imagined as a structure made out of small 

flat cells called simplices, arranged like bricks into a structure 

which models a manifold. The procedure of approximating a 

smooth manifold with a piecewise-linear one is commonly 

called triangulation, see Fig. 1. 

Within the framework of algebraic topology, the formal 

mathematical structure which describes piecewise-linear 

manifolds is called a simplicial complex. For the purpose of 

this article, we provide an informal descriptive definition of a 
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simplicial complex, without mathematical rigour. A simplicial 

complex is a combinatorial structure, containing the 

information about simplices of various dimensions that make 

up a complex, and the information about how simplices are 

connected to each other. A k-simplex is an elementary 

building block of a simplicial complex. It is an elementary 

geometrical “cell” of dimension k, which is being used to 

build simplices of higher dimension, and the entire simplicial 

complex. For k = 0, the simplex is called a vertex, it is 

represented geometrically as a single point, and has no 

internal structure. The k = 1 simplex is called an edge, 

geometrically represented as a single straight line, having two 

vertices at its boundary. For k = 2, the simplex is a triangle, 

having three boundary edges and three vertices. The case       

k = 3 describes a tetrahedron, having four boundary triangles, 

six edges and four vertices. One can go further into higher 

dimensions: k = 4 represents a simplex called pentachoron – it 

is a 4-dimensional figure, having five boundary tetrahedra, 10 

triangles, 10 edges and five vertices. In general, one can 

introduce a k-simplex for arbitrary dimension k, also called 

level. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Simplicial complex of a torus (source: Wikipedia). 

 

Given a set of simplices, one can “glue them up” into a 

bigger geometrical structure, called simplicial complex. In 

order to describe a manifold of dimension D, a simplicial 

complex is constructed by gluing a set of D-simplices by 

identifying their common boundary (D-1)-simplices. 

Naturally, this implies the identification of all corresponding 

sub-simplices of level k < D-1 as well. The resulting 

simplicial complex is homeomorphic to a piecewise-linear 

manifold of dimension D. 

The most important information about the simplicial 

complex, aside from its dimension D, is the data that tells one 
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which simplices are glued to which. This gives rise to a notion 

of a neighborhood of a k-simplex, which is a set of all 

simplices which contain a given simplex as its sub-simplex 

(called super-neighbors) and simplices which are contained in 

a given simplex (called sub-neighbors). Each k-simplex (for   

0 ≤ k ≤ D) in the complex has its set of neighbors, where by 

definition a simplex is not a neighbor of itself (this is 

convenient to avoid infinite loops when traversing a 

complex). The neighborhood structure of the entire complex 

determines the topology of the corresponding manifold. 

While manifolds of various topologies are important in 

their own right in mathematics, the applications in physics and 

engineering typically introduce functions over manifolds, 

such as distances, areas and volumes, temperature, electric 

and magnetic fields, etc. In the language of simplicial 

complexes, these functions are commonly called colors, and 

are assigned to simplices of various level k within the 

complex. Given a k-simplex, one can assign to it multiple 

colors, representing the value of a given function when 

evaluated on the k-simplex. A prototype example of colors is 

the geometry of a simplicial complex: each k-simplex is 

assigned its “size” according to its geometry --- each 1-

simplex (an edge) is assigned a real number representing its 

length, each 2-simplex (a triangle) is assigned a real number 

representing its area, tetrahedra are assigned volumes, and so 

on. Other examples are abound --- vertices can be assigned a 

temperature, edges can be assigned vectors of electric field, 

and so on. Depending on the problem at hand, one may or 

may not impose relationships between various colors, such as 

that the area of a triangle is consistent with the length of its 

edges, or similar. These relationships are collectively called 

constraints. 

In most everyday applications, one is interested in 

manifolds of dimension 1 and 2 (curves and surfaces). 

However, within the context of theoretical physics, one often 

needs to deal with manifolds of higher dimension – most 

commonly 3, 4, 5, 10, 11 and 26, while more sporadically 

anything in between and above. One of the typical scenarios is 

quantum gravity [4,5], a vast research area of fundamental 

theoretical physics, where the notion of spacetime is described 

as a piecewise-linear manifold of dimension D=4 or higher 

[6,7]. In order to apply numerical techniques to study the 

manifolds in such research disciplines, it is necessary to 

formulate and implement structures and algorithms which 

describe colored simplicial complexes of arbitrarily large 

dimension, in a uniform and optimal way. In what follows, we 

describe one such implementation, which is purposefully 

designed to mimic the mathematical structure of a simplicial 

complex as close as possible, while simultaneously providing 

efficient numerical techniques for the manipulation and study 

of such structures. 

I. N-DIMENSIONAL SIMPLICIAL COMPLEXES 

This section describes the structure of simplicial 

complexes, and explains an example C++ implementation of 

classes for storing simplicial complexes. 

Simplicial complexes consist of k-simplices at different 

levels. Given a simplicial complexes of dimension D, these 

elements include k-simplices for each level from zero to D. 

Elements at level zero are vertices, elements at level one are 

edges, elements on level two are triangles, etc. Finally, there 

are elements of highest level D. The representative source 

code of class for simplicial complexes is given in Algorithm 3 

from the Appendix. The source code is pruned from 

comments and unnecessary functionalities for the presentation 

of the simulator. 

K-simplex stores the level it has, the dimension of the 

simplicial complex it belongs to, neighboring elements and 

colors assigned to it. 

Neighboring elements of a k-simplex are defined as k-

simplices that this k-simplex is touching. Since these can be 

on various levels, the structure of neighbors is the same as for 

the simplicial complex. Therefore, the two main classes are 

mutually connected. 

 

 

 

 

 

 

 

 

 

Printing SimpComp tetrahedron, D = 3 

Simplices k = 0: 

1, 2, 3, 4 

Simplices k = 1: 

(1-2), (1-3), (1-4), (2-4), (2-3), (3-4) 

Simplices k = 2: 

(1-2-3), (1-3-4), (1-2-4), (2-3-4) 

Simplices k = 3: 

(1-2-3-4) 

 
Fig. 2. Tetrahedron and a corresponding output of the simplicial complexes 

simulator. 

 

One possible implementation of the neighboring elements 

is to store only neighbors from one level above, and one level 

beneath (first sub-neighbors and first super-neighbors). The 

lower- and higher-level neighbors can be deduced following 

the structure of the first neighbors. However, we have opted 

for storing neighbors from all levels, giving us the opportunity 

to divide the structure onto multiple computing nodes and run 

the code in parallel. At current state, the simulator is running 

on a single CPU. 

The instructions a CPU is executing are repeated over and 

over again, which makes this simulator suitable for 

acceleration using the dataflow paradigm [8,9]. The effort 

required for programming such architectures is higher than for 

conventional von Neumann architectures [10], but the 

simulator is suitable for transforming the C++ source code 

automatically [11]. Executing multiple simplicial complex 

operations in parallel requires appropriate scheduling 
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techniques [12]. 

Each k-simplex (including all vertices, edges, triangles, 

etc.) can be colored with different types of color. Example 

colors include: 

- k-simplex name, 

- unique identifier of k-simplex, 

- boundary color of k-simplex, 

- screen coordinates. 

These colors are included in our simplicial complex 

simulator, but the structure of the simulator allows adding 

additional user defined colors. 

The representative source code of the class for k-simplices 

is given in Algorithm 4 from the Appendix. Just like it is the 

case with simplicial complexes, this source code is pruned for 

better clarity. 

For simulation purposes, we have developed functions for 

seeding simplicial complexes at various levels, as it will be 

explained in the following section. In addition, coloring and 

printing simplicial complexes is also implemented. Pretty 

printing (or compact printing) prints k-simplices at all levels, 

where k-simplices of level higher than zero are printed as 

tuples consisting of unique identifiers (IDs) of their vertices. 

Fig. 2 shows an example tetrahedron (i.e. simplicial complex 

of dimension D = 3 consisting of a single 3-simplex and its 

sub-simplices) whose vertices are colored with unique 

identifiers that auto-increment after each assignment of the 

unique color to a vertex. Details of the implementation of 

compact printing is also explained in this manuscript. 

Screen coordinates can be attached to vertices of the 

tetrahedron. Therefore, it can be drawn on the screen. 

However, there is no need to assign coordinates. They are just 

a convenient way to show an object on a screen. Similarly, 

there is no need to assign unique ID to any vertex. In the 

previous example, if a vertex with unique ID four would not 

have a unique ID assigned to it, the tetrahedron could still be 

printed out, but with word “Simplex” being printed out in 

place of number four. 

II. SEEDING SIMPLICIAL COMPLEXES 

This section describes seeding simplicial complexes using 

C++ implementation of function seed_single_edge(). The 

example source code for seeding a single edge is used for 

demonstrating purposes. 

The process of seeding simplicial complexes will be 

explained using the source code shown in Algorithm 1. The 

source code is pruned from comments and unnecessary 

statements. Seeding a simplicial complex consists of the 

following steps, and statements in Algorithm 1 follow the 

same principle in the same order: 

- creating an empty simplicial complex of given dimension, 

- creating k-simplices for storing vertices and simplices of 

higher levels, 

- connecting vertices at each level with vertices on higher 

and lower levels. 

Adding a neighbor to a k-simplex is a symmetric operation. 

This means that both k-simplices (the calling one and the one 

given as an argument) are neighbors to each other. All 

functions of the simulator are written in a robust manner, 

checking the validity of input parameters. 

Note that multiple colors can be assigned to each k-

simplex, which is left out of consideration in this algorithm 

for better clarity. 

III. COLORING AND PRETTY PRINTING K-SIMPLICES 

This section describes coloring and pretty printing 

simplicial complexes. These functions might work in pair, but 

are not necessarily connected. 

A. Coloring K-simplices 

 

Coloring k-simplices will be explained using Algorithm 2 

by coloring vertices of an edge with boundary colors. First, 

vertices have to be created as k-simplices of level zero. Then, 

colors have to be created for all vertices. Finally, colors need 

to be pushed back to the vector of colors that each k-simplex 

has. 

 

Algorithm 1: Seeding a single edge. 

SimpComp* seed_single_edge(string name){ 
    SimpComp *edge = new SimpComp( 
            name, 1); 

    KSimplex *v1 = 
            edge->create_ksimplex(0); 

    KSimplex *v2 = 
            edge->create_ksimplex(0); 
    KSimplex *e1 = 

            edge->create_ksimplex(1); 
    v1->add_neighbor(e1); 

    v2->add_neighbor(e1); 
    return edge; 
} 

 

Algorithm 2: Coloring vertices with boundary color. 

KSimplex *v1 = 

        edge->create_ksimplex(0); 
KSimplex *v2 = 

        edge->create_ksimplex(0); 
Color *c1 = new BoundaryColor(true); 
Color *c2 = new BoundaryColor(true); 

v1->colors.push_back(c1); 
v2->colors.push_back(c2); 

 

Following colors are currently available: 

- unique ID colors 

- boundary colors 

- screen coordinate colors. 

Additionally, user is allowed to construct a custom color 

and use it within the simulator. The source code of the 

simulator is organized as a library, and user is allowed to 

extend it by using the library. 

Unique ID colors are predominantly used for pretty printing 

simplicial complexes. They are implemented by a class 

inherited from the basic color class. Two main fields include 
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static integer number, and an integer number. The first 

represents the current maximum of a unique color ID that is in 

use, and the second one is the color of a given k-simplex. 

Unlike unique ID colors, boundary colors have special 

meaning. Each k-simplex may contain boundary color, but it 

does not have to. A simplicial complex can have boundaries 

on k-simplices of one level lower than the dimension of the 

simplicial complex. For example, a triangle can have edges as 

boundaries. 

Screen coordinate colors are used for drawing simplicial 

complexes on a screen. The basic graphical user interface is 

under development. 

 

B. Pretty Printing K-simplices 

Printing k-simplices includes printing of all of the fields 

that KSimplex class contains. This includes printing all of the 

neighborhood elements the k-simplex has. This is usually 

overwhelming for a user. Therefore, pretty printing is 

designed to print unique ID colors of each k-simplex in most 

readable way authors could think of. 

Function KSimplex::print_compact() is responsible for 

pretty printing. It assigns to the pointer to the unique ID a 

value returned by a function get_uniqueID() that returns either 

nullptr if a k-simplex doesn’t have a unique ID, or a pointer to 

the color. 

If there is no unique ID color assigned to a k-simplex, the 

output consists solely of word “Simplex”. Otherwise, 

print_compact() function is called for a color that the pointer 

points to. Further, the following procedure is repeated, if level 

k is greater than zero and there are neighboring elements for 

all neighbors. A set of integer values is constructed, and then 

function print_vertices_in_parentheses(s) is called for 

neighbors, adding unique IDs to the set. This way, printing 

sorted values is achieved, along with avoiding duplicate 

values. Sample output of a simplicial complex pretty printing 

is shown in Fig. 1. 

IV. CONCLUSION 

We have demonstrated how one can implement in code the 

structure of a simplicial complex of arbitrary dimension, in a 

way that is faithful to its combinatorial definition, and 

perform the most basic operations on it, like instantiating, 

coloring and printing. 

The implementation of the basic classes of the code 

described in this work represents a fundamental basic building 

block for a more versatile software collection that aims to 

construct, manipulate and study the properties of simplicial 

complexes of arbitrary dimension. Future extensions of the 

software library will include the functions which implement 

attaching additional simplices to a boundary of a complex, 

performing Pachner moves [13] which transform a given 

complex into a different one without changing its topology, 

and functions for manipulating the colors and evaluating 

various mathematical constructions that include them. Note 

that the experimental data regarding the parallelization is yet 

to be collected (see the accompanying paper [14]). 

The resulting software collection will feature the generality 

and versatility that aim for applications both in pure 

mathematics (algebraic topology research) and theoretical 

physics (quantum gravity, field theory), but also with potential 

applications in other disciplines of engineering and industry, 

wherever the analysis and the study of geometry of manifolds 

and curved surfaces may be relevant. 

APPENDIX 

Algorithm 3: Declaration of SimpComp class. 

class SimpComp{ 

public: 
    SimpComp(int dim); 

    SimpComp(string s, int dim); 
    ~SimpComp(); 
    int count_number_of_simplexes( 

            int level); 
    void print(string space = ""); 

    bool all_uniqueID(int level); 
    void collect_vertices(set<int> &s); 
    void print_set(set<int> &s); 

    void print_vertices_in_parentheses( 
            set<int> &s); 

    void print_compact(); 
    // Creating new KSimplex at level k: 
    KSimplex* create_ksimplex(int k); 

    void print_sizes(); 
 

    string name; 
    int D; 
    // An element at each level 

    // is a list or vector 
    // of KSimplex pointers  

    // to KSimplex on that level: 
    vector< vector<KSimplex *> > 
            elements; 

}; 

 

Algorithm 4: Declaration of KSimplex class. 

class KSimplex{ 
public: 

    KSimplex(); 
    KSimplex(int k, int D); 

    ~KSimplex(); 
    bool find_neighbor(KSimplex *k1); 
    void add_neighbor(KSimplex *k1);     

    void print(string space = ""); 
    UniqueIDColor* get_uniqueID(); 

    void print_compact(); 
 

    int k; // level 

    int D; // dimension 
    SimpComp *neighbors; 

    vector<Color *> colors; 
}; 
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