
  

Abstract—This paper presents a rigorous solution for the 

current distribution in a hollow cylindrical conductor in the 

presence of a current filament placed outside the conductor. The 

currents are assumed low-frequency, time-harmonic, flowing in 

opposite directions. As a starting point, we chose a Fredholm-

type integral equation for the current density whose solution is 

sought in the form of an infinite sum of the proper harmonics – 

the modified Bessel functions of the second kind and 

trigonometric functions. The unknown coefficients in the sum are 

determined by equating the coefficients standing with the 

corresponding functions on both sides of the integral equation. 

The method presented in the paper allows treatment of the cases 

when the filament is inside the conductor and /or the currents 

have the same direction.  

 
Index Terms—current distribution; hollow conductor; 

filament; integral equation  

 

I. INTRODUCTION 

Determination of current distribution in a system of parallel 

cylindrical conductors with time-varying currents is a very 

complex problem since this distribution in each of the 

conductors is not only affected by its own electromagnetic 

field (skin effect), but also by the fields of all other conductors 

(proximity effect). There are very few cases where this 

problem can be solved in a closed form, so generally an 

implementation of various numerical methods is required. 

Among the most commonly used approaches to the combined 

skin and proximity effects we mention here: usage of 

Maxwell’s equations in terms of the magnetic vector potential 

[1–4], method of integral equations [5–11], boundary integral 

equation formulation [12,13], method of model functions [14], 

etc. 

In this paper we use an integral equation to solve in a 

closed form the problem of low-frequency current distribution 

in a cylindrical hollow conductor in the presence of an outer 

current filament, the currents being assumed sinusoidal and to 

flow in opposite directions. The solution is sought in the form 

of an infinite sum of proper harmonics with some unknown 

coefficients. These coefficients are found in a closed form by 

equating coefficients with the corresponding functions on both 

sides of the integral equation. 
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II.  INTEGRAL EQUATION FOR THE CURRENT DENSITY 

IN A HOLLOW CYLINDRICAL CONDUCTOR 

IN THE PRESENCE OF A FILAMENT 

Geometry of the problem is shown in Fig. 1. A current 

filament is parallel to a massive hollow cylindrical conductor 

of radii a and b. 

 
 

Fig. 1.  Massive hollow cylindrical conductor and filament 

 

The distance between the filament and the conductor axis is 

D, and the parameters of the conductor are σ and μ0. Currents 

of equal r.m.s. I and of frequency f flow through the conductor 

and the filament in opposite directions. The objective is to 

find the current distribution in the massive conductor. 

Following [5]-[6], [9], [11], we can write an integral 

equation for current density in the conductor: 
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where ,j 0
2 =k K is an unknown constant, and S is the 

annulus a ≤ r ≤ b, 0 ≤ θ ≤ 2π. 

 

Current density J(r,θ) in (1) is subject to the condition: 
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III. SOLUTION OF THE INTEGRAL EQUATION 

Separation of variables in the wave equation for current 

density leads to the following particular solutions 

(harmonics): In(kr), Kn(kr), cosn, sinn, where In and Kn are 
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modified Bessel functions. Symmetry requires that J(r,) be 

an even function in , which eliminates sinn. Hence, an 

appropriate form of the solution of (1) is 
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with some unknown coefficients An and Bn. When (3) is 

substituted into (1), we obtain 
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and we made use of [15] 
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The double integrals Fn and Gn, given by (5) - (6), 

seemingly very complex, can be evaluated in a closed form. 

This is done in the Appendix for Fn; Gn is found in the same 

way. Here we state the result. 
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With Fn and Gn given by (8) – (9), we can equate the 

constant terms and the coefficients with ln (r/D), rn cosn and 

r-n cosn on both sides of (4), to get respectively 
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To determine the five unknown constants (A0, B0, An, Bn 

and K) we need one more equation beside the four equations 

given by (10) - (13). This additional equation is obtained from 

(2) if we replace J(r, ) by (3). Then, we have 
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The integrals in (14) are readily evaluated by making the 

change of variables kr = x and using the identities [16] 
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Hence (14) becomes 
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Now, (11) and (15) can be solved for A0 and B0 
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and An, Bn are found from (12) - (13) 
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The remaining unknown K can be determined from (10), 

(16) – (17), but it is of no importance. 

Finally, (3) and (16) - (19) determine current density in the 

massive conductor 
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Physically, the first term on the right-hand side of (20) is 

due to the skin effect, and the infinite sum accounts for the 

influence of the filament (proximity effect). 

 

The same method applies if the filament is inside the 

conductor. In this case b/D in the infinite sum in (20) should 

be replaced by D/b. 

Expression (20) may also be derived by using Maxwell’s 

equations [4]. In this approach the magnetic vector potential is 

determined in media I, II and III (Fig. 1), which includes 

usage of appropriate boundary conditions on the interfaces 

r=a and r=b. The approach in the present paper is much 

simpler –solving integral equation (1) does not involve any 

boundary conditions. 

It may be shown that the particular cases a = 0 (massive 

conductor [6], [11]), and b – a = d << a (thin tubular 

conductor [5], [9]), follow from (20). Derivation for the 

former case is straightforward; for the latter case, it requires 

usage of a few formulas that involve Bessel functions. 

IV.  CONCLUSION 

In this paper, we derived a closed-form solution for the 

current distribution in a hollow cylindrical conductor in the 

presence of a current filament placed outside the conductor. A 

solution of an integral equation for the current density is 

found in the form of an infinite sum of proper harmonics - the 

modified Bessel functions of the second kind and the 

trigonometric functions. A remarkable feature of the method 

used is that it does not involve any boundary conditions. 

APPENDIX 

In this Appendix we prove (8), relation (9) is justified by 

the same procedure. 

Let n = 0. Then 
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where we used (7). We do not need to evaluate the integrals 

that include infinite sum, since 
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mdmdm . The two remaining 

integrals are evaluated as follows 
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 where the change of variables kr'=u and the identity 
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were used. Similarly, by using integration by parts 

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 API1.2 - Page 3 of 5 ISBN 978-86-7466-930-3



 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )







−−−=

=













−−=

=













−=

==







krIkbIkrI
D

r
krkbI

D

b
kb

k

duuIkrI
D

r
krkbI

D

b
kb

k

u

du
uIu

kD

u
uuI

k

duuI
kD

u
u

k
drkrI

D

r
r

kb

kr

kb

kr

kb

kr

kb

kr

b

r

00112

1112

112

0202

2

lnln
2

lnln
2

ln
2

ln
2

''
'

ln'

 (A3) 

 

since [16] 
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Now, relation (8) for n = 0 follows from (A1) - (A3). 
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Only the term with m =  n should be kept in the infinite 

sums, since for m  n  
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due to orthogonality of the sine and cosine functions. As a 

consequence, (A5) simplifies to 
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where we have taken into account that 
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The change of variables kr'=u and the relations [16] 
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enable to evaluate the two integrals in (A6) 
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Finally, from (A6) - (A8) 
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 Therefore, the proof of (8) is completed. 
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