Natural Polymers As Nanocapsule Carriers

Danijela Rajić, Srdan Vuković, Svetlana Pelemiš, Mileša Srečković

Abstract—Natural polymers obtained from renewable sources have recently been increasingly considered as suitable carriers, in the form of nanocapsules, for various active components. They enable the formation of a system for the delivery of active substances so that it is possible to encapsulate, protect, and release bioactive substances in drugs and food. Encapsulation of active components also enables the protection of sensitive and easily volatile components. Particular attention is paid to their application in the food industry for the production of functional foods, which, in addition to being nutritional, also have a certain therapeutic effect. In the pharmaceutical industry, more and more research is being devoted to them in the area of long-release drugs. Nanocapsules outperform most other colloidal carriers because of their small size, greater encapsulation potential, greater encapsulation power, and targeted action. Most of the existing carriers based on natural proteins used in the food and pharmaceutical industries are hydrophilic, so the encapsulation of hydrophobic active substances is a special challenge. This paper presents an overview of natural polymers used as suitable carriers and the possibilities of their use in the synthesis of nanocapsules for various uses.

Index Terms—natural polymers; renewable sources; nanocapsule carriers; drugs; active components.

I. INTRODUCTION

Natural polymers derived from food are considered desirable materials for constructing delivery systems to encapsulate, protect, and release bioactive components in nutraceuticals, pharmaceuticals and food [1]. Food proteins are of particular interest in the design of delivery systems, due to their high nutritional value, abundant sources, structural versatility and considerable functional properties [2, 3]. Nanoparticles constructed of food proteins have suitable physicochemical properties and functional attributes, which allow them to entrap both hydrophilic and hydrophobic bioactive compounds. They are increasingly being applied as delivery systems in the food industry to improve the stability and oral bioavailability of bioactive components [4]. Nanocapsules have an advantage over most of the other colloidal carriers due to their smaller size, higher encapsulation efficiency, more effective penetration ability and targetability [5]. Nanobiotechnology have wide range of application [6]. Nanocapsules were first developed around 1970. They were initially devised as carrier for vaccines and anticancer. Over the past few decades, there has been considerable interest in developing biodegradable nanocapsules (liposome, virus like particle (VLP), protein, etc.) as effective food and drug delivery device [2].

Nanocapsules have become an important area of research in the field of food and drug delivery vehicles [7]. Scientific community working at the interface of chemistry and biology is always on the lookout for biopolymers from natural and sustainable sources to generate newer structures which could be used for applications ranging from product structuring to the in vivo delivery of bioactives. Since, most of the biopolymers approved and been used for food and pharmaceutical applications (such as gelatin, casein, dextran, etc.) are water soluble in nature; it becomes necessary to involve steps of physical and chemical alterations like crosslinking and hydrophobic modifications in order to generate colloidal particles from these materials [8].

Nanocapsules have an advantage over hydrogels, organogels, liposome, and microparticles due to their smaller particle size, higher encapsulation efficiency, more effective penetration ability and targetability. Nanocapsules are usually fabricated from varieties of natural polymers, mainly including food-grade proteins and polysaccharides, because they are biocompatible, biodegradable, and non-toxic properties, such as soy protein lactoferrin, gelatin, chitosan and alginate [5]. Nanocapsules generally vary in size from 10 to 1000 nm [9, 10]. Recently protein nanoparticles have been shown efficacy as biodegradable carrier which can incorporate variety of drugs in relatively non-specific fashion [11]. The food or drug is dissolved, entrapped, encapsulated or attached to a nanoparticles matrix and depending upon the method of preparation, nanoparticles, nanospheres or nanocapsule can be obtained. Nanocapsules are vesicular systems in which the drug is confined to a cavity surrounded by a unique polymer membrane, while nanospheres are matrix systems in which the drug is physically and uniformly dispersed [7, 9]. Figure 1 shows the schematic diagram of nanocapsulated and nanosphere particles loaded with food or drug.
Among these colloidal system those based on protein may be vary promising since they are biodegradable and non-
aseptic relatively easy to prepared and their size distribution
can be monitored easily [12]. A wide variety of drugs can be
delivered using nanoparticulate carriers via a number of
routes. Food-borne diseases are becoming one of the serious
problems faced by humans along with environmental
contamination and because of that technological innovations
in food safety related to consumer confidence and human
health are becoming extremely urgent [13].

II. PLANT PROTEINS

Among various natural or synthetic polymer-based
particulate systems potentially available to food applications,
plant protein-based micro- and nanoparticles are preferably
used for nutrient or drug delivery because they offer
advantages over other materials in terms of biodegradability,
abundant renewable sources, safety status in vivo, and many
useful functional properties [14-18]. Additionally, they also
exhibit high loading capacity of various bioactives due to their
amphiphilic structure, multiple binding sites, and a variety of
possible binding mechanisms include electrostatic interactions,
hydrophobic interactions, hydrogen and covalent bonding.
Due to the known characteristics of microencapsulation, easy
surface modification and scale-up feasibilities, particulate
systems in micron and nanometre scales provide better
opportunities for targeted delivery of bioactive ingredients
[16, 19, 20]. The plant proteins most commonly used in the
production of nanocapsules are zein, soy, and wheat proteins,
and they will be discussed in this paper.

A. Zein

Zein is a protein classified within the group of prolamins. It
is attractive for use in nanotechnology as a polymer matrix
and is classified as Generally Recognized As Safe (GRAS) by
the U.S. Food and Drug Administration (FDA). In addition,
zein has promising characteristics, such as biocompatibility,
biodegradability, and low toxicity. It is widely used in that it
can encapsulate generally different insoluble compounds in
water to provide stability and control of release when is in the
GastroIntestinal Tract (GIT) [14, 21]. Zein is the main form of
protein storage contained in the endosperm tissue of corn and
comprises almost 80% of the whole protein content in the
corn. In the past, zein was considered more of a by-product of
corn processing industries; the consensus indicated zein to be
a low-valued material without important potential
technological uses. However, due to several recent
methodologies and developing processes allowing
applications in different fields, nowadays, there is new
thought related to zein and zein-based materials towards
considering them as more valuable materials. Potential
applications of zein include uses as biodegradable plastics,
fibers, adhesives, coatings, ceramics, inks, cosmetics, textiles
and chewing gum [14, 22, 23, 24].

B. Soy proteins

Soy proteins, the by-product of soy oil processing, is now
one of the most widely used protein ingredients in food
processing. When different processing methods are
conducted, soy protein aggregates with different structures
and functionalities could be formed along different pathways
[25]. In addition to zein, soy protein-based particles are also
promising candidates as delivery systems for nutraceuticals
or drugs. Due to the ligand binding properties, soy proteins can
serve as an effective carrier for various bioactive molecules.
They can bind these molecules to form complexes in
nanoscale through physical interactions, mainly hydrophobic
interactions, hydrogen bonds and van der Waals attraction.
Recent studies suggest that soy proteins have the potential to
be used as carriers for both hydrophobic and hydrophilic
bioactive compounds, such as vitamin B12, cranberry
polyphenols, curcumin, resveratrol (RES), and polyphenols
from Concord grape pomace, to improve their water
solubility, stability and bioavailability [14].

C. Wheat gliadins

Nanocapsules made from gliadin, a component of wheat
gluten, have been prepared for nutrient/drug delivery and
controlled release applications. For example, gliadin
nanocapsules has been used as carriers for all-trans-retinoic
acid (RA) [26]. Gliadin nanocapsules (450–475 nm) were
showed to be a suitable delivery and controlled release system
for nutrients and drugs with different polarity (hydrophobic and
amphiphilic). It was found that the amounts of the
entrapped drug increased with an increase in the drug
hydrophobicity, confirming a strong interaction between
gliadins and apolar compounds. Their essential feature is low
price and availability [14, 26].

III. PREPARATION METHODS

Protein nanocapsules can be obtained by different methods
[11]. Protein nanocapsules have been extensively studied as
suitable for drug delivery since they are biodegradable,
nontoxic and non antigenic, because of their defined primary
structure and high content of charged amino acids (that is,
lysine). The protein-based nanocapsules could allow the
electrostatic adsorption of positively or negatively charged
molecules without the requirements of other compounds. In
addition, protein nanocapsules can be easily prepared under
soft condition, by coacervation or controlled desolvation
processes [2]. Among the available potential colloidal drug
carrier systems covering the size range described, protein-
based nanocapsules play an important role [11]. Biopolymers,
such as proteins, are commonly used to encapsulate oil-in-
water emulsions. Simple and complex coacervation, spray
drying and heat denaturation represent three major
microencapsulation techniques based on proteins. Their
principles are quite similar: emulsification of the core
material (oil) is followed by microcapsules wall formation
induced by environmental conditions changing. Concerning
simple coacervation method, the protein precipitation around
Oil droplets is obtained by changing pH and temperature or by the “salting-out” technique. Widespread presence of microcapsules based on animal proteins such as gelatin, casein or albumin contrasts with a very limited use of plant proteins. Wheat gliadin was one of the rare plant storage proteins used for encapsulation of dispersed oil phase by simple coacervation method. The microparticles made from soy protein isolate (SPI) were mainly fabricated by using spray-drying, coacervation, and cold gelation techniques [11, 14, 27]. The table 1 provides an overview of nanoparticle types and methods of their preparation.

<table>
<thead>
<tr>
<th>Type of particles</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zein microparticles</td>
<td>Spray drying or supercritical antisolvent method</td>
</tr>
<tr>
<td>Zein microparticles</td>
<td>Spray or freeze drying</td>
</tr>
<tr>
<td>Zein nanoparticles</td>
<td>Liquid–liquid dispersion method</td>
</tr>
<tr>
<td>Zein nanoparticles</td>
<td>Phase separation or liquid–liquid dispersion method</td>
</tr>
<tr>
<td>Zein nanoparticles</td>
<td>Liquid–liquid dispersion method or electrospraying</td>
</tr>
<tr>
<td>Zein nanoparticles</td>
<td>Supercritical antisolvation method</td>
</tr>
<tr>
<td>Zein nanoparticles</td>
<td>Liquid–liquid dispersion method or electrospraying</td>
</tr>
<tr>
<td>Zein-chitosan complex microparticles</td>
<td>Low-energy phase separation method</td>
</tr>
<tr>
<td>SPI-zein complex microparticles</td>
<td>Ca$^{2+}$-induced gelation method</td>
</tr>
<tr>
<td>SPI/FA-conjugated SPI nanoparticles</td>
<td>Ethanol desolvation method</td>
</tr>
<tr>
<td>SPI nanoparticles</td>
<td>Ca$^{2+}$-induced gelation method</td>
</tr>
<tr>
<td>Soy protein nanocomplex</td>
<td>Ligand binding properties</td>
</tr>
<tr>
<td>SPI-CMCS complex microparticles</td>
<td>Ca$^{2+}$ induced co-gelation method</td>
</tr>
<tr>
<td>Soy protein–soy polysaccharide complex nanogels</td>
<td>High-pressure homogenization and heating procedures</td>
</tr>
<tr>
<td>Soy lipophilic protein nanoparticles</td>
<td>Ultrasonic treatment</td>
</tr>
<tr>
<td>Gliadin nanoparticles</td>
<td>Antisolvent precipitation method</td>
</tr>
</tbody>
</table>

IV. Conclusion

Natural polymers show great potential for developing promising delivery vehicles to incorporate and protect various bioactive ingredients, and control their release behaviour under the different conditions. It could be used to produce a wide range of delivery systems, such as micro- and nanoparticles, fibers, films and hydrogels, all of which can be tailored for the design of innovative functional foods. As the interest in functional foods is rapidly growing, the development of advanced plant protein-based delivery systems will expand the possible applications. Nanocapsules outperform most other colloidal carriers because of their small size, greater encapsulation potential, greater encapsulation power, and targeted action. Nevertheless, the delivery of functional ingredients in the complex food systems is rather challenging as it is essential to evaluate not only the impact of complex food matrix on the storage stability and bioavailability of the encapsulated ingredients, but also the effect of the delivery systems on the food product functionality, such as stability, texture, taste, appearance and bioavailability of the ingredients.

The work also has a wide application from forensics to hermiotology.

References

