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Abstract— The importance of unique bent functions (most 
significantly in cryptography) creates a demand for their 
generation. Bent function generation is an interesting problem 
and, in this paper, we explore the idea of using invariant spectral 
operations in a Genetic algorithm for generating bent functions. 
Invariant spectral operations, when executed on bent function, 
resulting function is also bent. If multiple operations are 
performed consecutively, then there is a possibility that the newly 
generated bent function is not unique. A genetic algorithm is used 
to search the solution space in order to produce the most unique 
bent functions, for the least number of invariant spectral 
operations. 

 
Index Terms— Bent functions, invariant spectral operations, 

genetic algorithm. 

I. INTRODUCTION 

Bent functions are Boolean functions most distant from 
affine functions. They were introduced by O.S. Rothaus in 
1976. [1], and they have characteristics that are interesting for 
cryptographic applications. There are many algorithms for the 
generation of the bent function, see for example [2-9] and 
references therein. 

A very important characteristic of the bent functions is flat 
Walsh spectra. All Walsh spectral coefficients of n-variable 
bent functions have the same absolute value equal to 2n/2. 
Invariant spectral operations are operations that do not change 
the absolute values of spectral coefficients, i.e., they only 
permute or change the sign of spectral coefficients. It follows 
that new bent functions can be generated from any known bent 
function by applying invariant spectral operations.  References 
[7-9] elaborate methods for bent functions generation by using 
invariant spectral operations. The main disadvantage of those 
methods is that the same bent function can be generated by 
applying different sequences of operations.  

Genetic algorithm is inspired by natural selection, that 
belongs to the evolutionary algorithm group. This algorithm is 
used to optimize a solution for a corresponding problem. It can 
be used most effectively when the search space is vast, but the 
solution does not need to be perfect, only optimal to some 
degree. 
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This paper proposes the usage of a Genetic algorithm for the 
generation of bent functions. Bent functions belong to the vast 
space of Boolean functions. Therefore, the search for unique 
bent functions can be presented as executing a sequence of 
invariant spectral operations, and optimization is used in the 
sequence of operations, so that we will produce as many 
different bent functions as possible.  

The paper is organized in the following way: Section II 
presents the ANF representation of bent function. Section III 
covers Invariant spectral operations. Oscar-Bent functions are 
presented in Section IV and the Genetic algorithm is defined in 
Section V. Section VI explains the problem definition and 
usage of the Genetic algorithm for the generation of bent 
functions. Section VII goes over the results, and Section VIII 
gives a conclusion.  

II. ANF REPRESENTATION OF BENT FUNCTIONS 

A. Definition 

An n-variable Boolean function 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥) can be 
presented by the algebraic normal form (ANF), or the positive 
polarity Reed-Muller expansion as: 

𝑓(𝑥ଵ, … , 𝑥) =   𝑆(𝑖)
ଶିଵ

ୀ
ෑ 𝑥

ೖ
ିଵ

ୀ
 

where 𝑆(𝑖) is the Reed-Muller spectral coefficient and  
𝑖𝑖ଵ … 𝑖ିଵ is the binary representation of the index i. 

Reed-Muller spectral coefficients of bent functions are equal 
to 0 for each input vector with the number of ones greater than 
𝑛/2. The maximal number of variables in a product term is 
called the degree of 𝑓 [8]. 

B. Disjoint quadratic function 

The disjoint quadratic function contains n/2 disjoint 
quadratic terms, defined as: 

𝑓(𝑥ଵ, … , 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ … ⊕ 𝑥ିଵ𝑥 

III. INVARIANT SPECTRAL OPERATIONS 

A. Definition 

Invariant spectral operations do not change the absolute 
values of Walsh spectral coefficients, they only permute or 
change the sign of spectral coefficients. These changes preserve 
the flat spectrum.  

 Due to the simplicity of invariant spectral operations in the 
Reed-Muller domain, all operations are introduced in this 
domain. For consistency, all examples will be provided starting 
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from the Disjoint quadratic function for 𝑛 = 6. 

B. Function complement 

Function complement is defined as:  
  

𝑓ଶ = 𝑓ଵ
ഥ = 𝑓ଵ ⊕ 1 

For example, if 
𝑓ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥 

The resulting function will be: 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥 ⊕ 1 

C. Variable complement 

Variable complement replaces the input variable 𝑖 by its 
complement 𝑥

ᇱ = 𝑥 ⊕ 1.  
If variable complement on variable 𝑥ସ is performed, the 

function 𝑓ଵ is transformed to: 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑓ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସതതത, 𝑥ହ, 𝑥) 

=  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ(𝑥ସ ⊕ 1) ⊕ 𝑥ହ𝑥 
     = 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ଷ ⊕ 𝑥ହ𝑥 

D. Disjoint spectral translation 

Disjoint spectral translation replaces the input variable 𝑖 by 
𝑥

ᇱ = 𝑥 ⊕ 𝑥, where 𝑖 ≠ 𝑗.  
In the given example, if 𝑥ଷ is replaced by 𝑥ଷ ⊕ 𝑥, following 

function is generated: 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑓ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ ⊕ 𝑥, 𝑥ସ, 𝑥ହ, 𝑥) 

= 𝑥ଵ𝑥ଶ ⊕ (𝑥ଷ ⊕ 𝑥)𝑥ସ ⊕ 𝑥ହ𝑥 
= 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ସ𝑥 ⊕ 𝑥ହ𝑥 

E. Spectral translation 

In the general case, we can define spectral translation as 
adding linear member 𝑥  to the function: 

𝑓ଶ = 𝑓ଵ  ⊕ 𝑥 
If in our example 𝑥ଶ is added, resulting function is: 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥  ⊕ 𝑥ଶ 

F. Permutation of variables 

Permutation of variables is defined as the interchange of two 
input variables 𝑥 ↔ 𝑥  , where 𝑖 ≠ 𝑗.  

𝑓ଶ൫𝑥ଵ, … , 𝑥 , … , 𝑥 , … , 𝑥൯ = 𝑓ଵ൫𝑥ଵ, … , 𝑥 , … , 𝑥 , … , 𝑥൯ 
In the given example if we interchange input variables 𝑥ଷ 

and 𝑥 the resulting function is: 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑓ଵ(𝑥ଵ, 𝑥ଶ, 𝑥, 𝑥ସ, 𝑥ହ, 𝑥ଷ) 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥𝑥ସ ⊕ 𝑥ହ𝑥ଷ 

G. Generalized spectral translation 

The generalized spectral translation is defined for the 
function 𝑓 which has 𝑛 variables (𝑛 = 2 ∗ 𝑘, 𝑘 ≥ 3) and 
contains 𝑛/2 disjoint quadratic terms: 

𝑓(𝑥ଵ, . . , 𝑥) = ⋯ 𝑥భ
𝑥భ

⊕ 𝑥మ
𝑥మ

⊕ … ⊕ 𝑥/మ
𝑥/మ

 

Performing generalized spectral translation on function 𝑓 
adds a new term 𝑥భ

𝑥మ
… 𝑥/మ

 where 

 𝑘ଵ ∈ {𝑖ଵ, 𝑗ଵ}, 𝑘ଶ ∈ {𝑖ଶ, 𝑗ଶ}, … , 𝑘/ଶ ∈ {𝑖/ଶ, 𝑗/ଶ}. 
If the starting function is 𝑓ଵ is and if 𝑘ଵ = 1,   𝑘ଶ =

3, and 𝑘ଷ = 6, resulting function 𝑓ଶ is: 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥 ⊕ 𝑥ଵ𝑥ଷ𝑥 

IV. OSCAR-BENT FUNCTIONS 

The bent function which does not have linear and constant 
members can be called Oscar-Bent function (the name derives 
from Oscar Rothaus, who first defined bent functions). For the 
bent function defined in (1), we can derive the Oscar-Bent 
function shown in (2) by using invariant spectral operations.  

𝑓ଵ(𝑥ଵ, … , 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥 ⊕ 𝑥ଵ ⊕ 1       (1) 
𝑓ଶ(𝑥ଵ, … , 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥                 (2) 

To transform a bent function to its Oscar-Bent function we 
need to remove linear and constant members, which is done by 
using two invariant spectral operations: function complement 
and spectral translation. By counting only Oscar-Bent 
functions, we can deduce that the number of unique bent 
functions found with this algorithm is calculated by multiplying 
the number of Oscar-Bent functions with 2ାଵ. The multiplier 
is found by calculating all possible combinations using two 
invariant operations mentioned above. 

V. GENETIC ALGORITHM 

Genetic algorithm is a subclass of Evolutionary algorithm 
(EA), which is a subclass of Evolutionary computation and 
belongs to set of general stochastic search algorithm [10]. 

Population in both Genetic algorithms and in nature 
represents the set of individuals who are trying to survive and 
pass on their genes to the next generations. An individual can 
be interpreted as a set of genes and abilities, and how fit they 
are to survive in the current population and habitat. If we 
observe an individual as a solution to a problem, as well as in 
nature, optimization (survival of the fittest) will transpire, in the 
end, the fittest individual will represent an optimized solution 
to the problem. Given a population of individuals within some 
environment that has limited resources, competition for those 
resources causes natural selection (survival of the fittest). This 
in turn causes a rise in the fitness of the population. Given a 
quality function to be maximized, we can randomly create a set 
of candidate solutions, i.e., elements of the function’s domain. 
We then apply the quality function to these as an abstract fitness 
measure – the higher the better. Based on these fitness values 
some of the better candidates are chosen to seed the next 
generation. This is done by applying recombination and/or 
mutation to them. Recombination is an operator that is applied 
to two or more selected candidates (the so-called parents), 
producing one or more new candidates (the children). The 
mutation is applied to one candidate and results in one new 
candidate. Therefore, executing the operations of 
recombination and mutation on the parents leads to the creation 
of a set of new candidates (the offspring). These have their 
fitness evaluated and then compete – based on their fitness (and 
possibly age) – with the old ones for a place in the next 
generation. This process can be iterated until a candidate with 
sufficient quality (a solution) is found or a previously set 
computational limit is reached [11]. 

The genetic algorithm can be described by the pseudo-code 
in Fig. 1. 
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InitializePopulation(); 
EvaluatePopulation(); 
while i < MaxIteration and  
BestFitness < MaxFitness do 
 Fitness = FitnessCalculation(); 
 Selection(); 
 ParentSelection(); 
 Reproduction(); 
 i++; 
 BestFitness = Max(Fitness); 
end while  
return BestFitness 

 
Fig. 1.  Pseudo code detailing the genetic algorithm 

A. Parent selection 

Parent selection represents a strategy of selecting good 
parents to get a better next generation. The strategy should 
consist of some random chance in selection, so diverse parents 
will be used, and we can diverge from the local maximum 
(which can be reached by using the same group of parents).  

- There are different strategies, for this paper, we have 
used: 

- Roulette selection – odds of selection are determined 
by individual fitness and a corresponding piece of the 
roulette wheel is given; a random number is generated 
to represent a ball spin. 

- Rang selection – is like Roulette selection, but fitness 
is scaled to give more chances to weaker individuals. 

- Tournament selection – from a randomly selected 
group of individuals the best individual is chosen 
based on fitness. 

B. Recombination and mutation 

Recombination and mutation are used to produce a new 
solution to find the best one which solves the problem. Both 
methods may and may not be performed (based on chance 
which is determined on startup).  

There are several recombination methods, but the most 
common is a crossover with one crossover point which is 
randomly selected. Genes from the first parent are copied to the 
crossover point, after which genes from the second parent are 
copied.  

Mutation, if performed, results in randomly changing 
individual genes. For each gene, independently, it is 
determined whether the mutation will be performed or not.  

C. Adult selection 

Adult selection defines how will the new generation join the 
existing group of adults. Since the “habitat” can only sustain an 
already defined number of individuals, adult selection is 
needed to determine who will survive. Several methods are 
implemented: 

- Full generational replacement – as the name applies, 
the parental generation is replaced with the new 
generation. 

- Generational mixing – both generations are mixed, 
and the best of mixed generations survives.  

- Overproduction – this method is a mixture between 

full generational replacement and generational 
mixing, in which the new generation has twice as 
many individuals as the parental generation, and only 
a half of the best child individuals survive to form the 
new parental generation. 

Elitism can also be used, elitism enables keeping the best 
solution for the next solution, regardless of chosen adult 
selection. 

VI. GENETIC ALGORITHM FOR BENT FUNCTIONS 

GENERATING 

The problem can be defined by finding the most bent 
function by using the least number of invariant spectral 
operations. Since invariant spectral operations are performed 
on a bent function, a starting bent function needs to be defined. 
In our case, we start from the disjoint quadratic function.  

For each implementation of a genetic algorithm, it is crucial 
to define an individual (which represents a solution to a 
problem) and a fitness function (which represents how good the 
solution is).   

A. Individual representation 

An individual is represented as a sequence of invariant 
operations which are performed on the most recent bent 
function.  

B. Fitness function 

It is recommended that the fitness function should be defined 
so it would have a minimum (the worst solution) and the 
maximum (the best solution), even though the boundaries can 
be arbitrary, the custom is to choose boundaries as 0 and 1. 

To determine how good is the solution, we need to go back 
to the problem definition which states that we should find the 
most unique bent functions for the least number of invariant 
spectral operations. From this, we can derive that the fitness 
function can be calculated as the number of unique Oscar-Bent 
functions divided by the number of used invariant spectral 
operations.  

By searching for the unique Oscar-Bent functions, we can 
generate the most bent functions, given that from the one 
Oscar-Bent function we can derive 2ାଵ bent functions. 

VII. EXPERIMENTAL RESULTS 

The application was developed in C#, and tests were 
performed on the laptop with the following configuration: 

- CPU: Intel® Core™ i5-8250U CPU @ 1.6GHz 
- RAM: 16 GB 
- OS: 64bit Windows 10 

Multiple parameters can be changed, and which can 
influence results (both performance and result wise). Testing 
all permutations of the possible combination of parameters is 
not a trivial task, and it is time-consuming. Therefore, some 
parameters were hardcoded with values that we perceived as 
best with our experience and using educated guesses. 

Parameters that were hardcoded for all tests: 
- Adult selection – Generational mixing 
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- Parent selection – Tournament selection 
o Tournament size – 20% of the population 

- Possibility of gene mutation – 10% 
- Possibility of recombination – 90% 

A. Test 1 – Different number of genes 

In this test we have chosen the number of variables to equal 
6, population size is set to 10, and the number of generations is 
limited to 100. In this test, we will change the number of genes 
and compare the number of unique Oscar-Bent functions in an 
average of 5 runs. Results are shown in Table I.  

 
TABLE I.   

RESULTS OF TEST 1 

 
Number 
of genes 

Number of generated OBF Time (s) 

100 97.8 0.066 

1 000 948.4 0.454 

10 000 9 364.4 8.31 

100 000 92 058 82.724 

 
Through a different number of genes, we have seen that with 

linear growth of the number of genes, the number of unique 
Oscar-Bent functions grows in a linear fashion, with the growth 
factor between 9.5 and 10. When we analyze the time needed, 
it grows exponentially which is expected since the solution 
space grows exponentially as well. 

B. Test 2 – Different number of variables 

As in the previous test, the population size is set to 100, the 
number of generations is limited to 100 and the number of 
genes to 10 000. Here we will fluctuate number of variables. 
Results are shown in Table II. 

 
TABLE II.   

RESULTS OF TEST 2 

 
n Number of generated OBF Time (s) 
8 9 652.6 16 
10 9 786.8 35.316 
12 9 834.4 111.346 

14 9 881.2 413.6 

 
While an increasing number of variables we can observe that 

the number of unique Oscar-Bent functions increase with low 
percentages. Factor of growth for the time needed increases 
with each step, but it does not increase exponentially. 

C. Test 3 – Application limits 

In this test, we emphasized the performance limits of the 
application, not to the numbers we have, therefore we have run 
this test only once. Here, we have kept the number of genes to 
10 000 and the number of generations to 100, as in the last test. 
But we have changed population size to 100. The results are 
shown in Table III. 

TABLE III.   
RESULTS OF TEST 3 

 

n Number of generated OBF Time (s) 

8 9 673 169.18 

10 9 768 405.08s 

12 9 845 1318.69s 

14 9 877 1801.56s 

16 N/A N/A 

VIII. CONCLUSION 

We have seen that the usage of Genetic algorithm can be 
used in the generation of new bent functions. The performance 
of this approach indicates that future work can give promising 
results. 

Memory is the biggest obstacle when working with bent 
functions. This problem can be approached by tracking only 
Oscar-Bent functions, which is performed in this paper. 
Further, all functions are kept in memory, which is a problem 
when expecting many unique Oscar-Bent functions, which we 
have seen in test 3. Future work will address this problem.  
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