
1

Abstract— The importance of unique bent functions (most
significantly in cryptography) creates a demand for their
generation. Bent function generation is an interesting problem
and, in this paper, we explore the idea of using invariant spectral
operations in a Genetic algorithm for generating bent functions.
Invariant spectral operations, when executed on bent function,
resulting function is also bent. If multiple operations are
performed consecutively, then there is a possibility that the newly
generated bent function is not unique. A genetic algorithm is used
to search the solution space in order to produce the most unique
bent functions, for the least number of invariant spectral
operations.

Index Terms— Bent functions, invariant spectral operations,

genetic algorithm.

I. INTRODUCTION

Bent functions are Boolean functions most distant from
affine functions. They were introduced by O.S. Rothaus in
1976. [1], and they have characteristics that are interesting for
cryptographic applications. There are many algorithms for the
generation of the bent function, see for example [2-9] and
references therein.

A very important characteristic of the bent functions is flat
Walsh spectra. All Walsh spectral coefficients of n-variable
bent functions have the same absolute value equal to 2n/2.
Invariant spectral operations are operations that do not change
the absolute values of spectral coefficients, i.e., they only
permute or change the sign of spectral coefficients. It follows
that new bent functions can be generated from any known bent
function by applying invariant spectral operations. References
[7-9] elaborate methods for bent functions generation by using
invariant spectral operations. The main disadvantage of those
methods is that the same bent function can be generated by
applying different sequences of operations.

Genetic algorithm is inspired by natural selection, that
belongs to the evolutionary algorithm group. This algorithm is
used to optimize a solution for a corresponding problem. It can
be used most effectively when the search space is vast, but the
solution does not need to be perfect, only optimal to some
degree.

Milan Stojanović is master’s-degree student in Computer Science at Faculty

of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14,
18000 Niš, Serbia (e-mail: milances.14@gmail.com)

Suzana Stojković is with Dept. of Computer Science, Faculty of Electronic
Engineering, University of Niš, Aleksandra Medvedeva 14 18000 Niš, Serbia
(e-mail: suzana.stojkovic@elfak.ni.ac.rs).

This paper proposes the usage of a Genetic algorithm for the
generation of bent functions. Bent functions belong to the vast
space of Boolean functions. Therefore, the search for unique
bent functions can be presented as executing a sequence of
invariant spectral operations, and optimization is used in the
sequence of operations, so that we will produce as many
different bent functions as possible.

The paper is organized in the following way: Section II
presents the ANF representation of bent function. Section III
covers Invariant spectral operations. Oscar-Bent functions are
presented in Section IV and the Genetic algorithm is defined in
Section V. Section VI explains the problem definition and
usage of the Genetic algorithm for the generation of bent
functions. Section VII goes over the results, and Section VIII
gives a conclusion.

II. ANF REPRESENTATION OF BENT FUNCTIONS

A. Definition

An n-variable Boolean function 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥) can be
presented by the algebraic normal form (ANF), or the positive
polarity Reed-Muller expansion as:

𝑓(𝑥ଵ, … , 𝑥) = 𝑆(𝑖)
ଶିଵ

ୀ
ෑ 𝑥

ೖ
ିଵ

ୀ

where 𝑆(𝑖) is the Reed-Muller spectral coefficient and
𝑖𝑖ଵ … 𝑖ିଵ is the binary representation of the index i.

Reed-Muller spectral coefficients of bent functions are equal
to 0 for each input vector with the number of ones greater than
𝑛/2. The maximal number of variables in a product term is
called the degree of 𝑓 [8].

B. Disjoint quadratic function

The disjoint quadratic function contains n/2 disjoint
quadratic terms, defined as:

𝑓(𝑥ଵ, … , 𝑥) = 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ … ⊕ 𝑥ିଵ𝑥

III. INVARIANT SPECTRAL OPERATIONS

A. Definition

Invariant spectral operations do not change the absolute
values of Walsh spectral coefficients, they only permute or
change the sign of spectral coefficients. These changes preserve
the flat spectrum.

 Due to the simplicity of invariant spectral operations in the
Reed-Muller domain, all operations are introduced in this
domain. For consistency, all examples will be provided starting

Genetic Algorithm for Bent Functions
Generating

Milan Stojanović and Suzana Stojković

VII1.2 Page 1 of 4

from the Disjoint quadratic function for 𝑛 = 6.

B. Function complement

Function complement is defined as:

𝑓ଶ = 𝑓ଵ
ഥ = 𝑓ଵ ⊕ 1

For example, if
𝑓ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥

The resulting function will be:
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥 ⊕ 1

C. Variable complement

Variable complement replaces the input variable 𝑖 by its
complement 𝑥

ᇱ = 𝑥 ⊕ 1.
If variable complement on variable 𝑥ସ is performed, the

function 𝑓ଵ is transformed to:
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑓ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସതതത, 𝑥ହ, 𝑥)

= 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ(𝑥ସ ⊕ 1) ⊕ 𝑥ହ𝑥
 = 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ଷ ⊕ 𝑥ହ𝑥

D. Disjoint spectral translation

Disjoint spectral translation replaces the input variable 𝑖 by
𝑥

ᇱ = 𝑥 ⊕ 𝑥, where 𝑖 ≠ 𝑗.
In the given example, if 𝑥ଷ is replaced by 𝑥ଷ ⊕ 𝑥, following

function is generated:
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑓ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ ⊕ 𝑥, 𝑥ସ, 𝑥ହ, 𝑥)

= 𝑥ଵ𝑥ଶ ⊕ (𝑥ଷ ⊕ 𝑥)𝑥ସ ⊕ 𝑥ହ𝑥
= 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ସ𝑥 ⊕ 𝑥ହ𝑥

E. Spectral translation

In the general case, we can define spectral translation as
adding linear member 𝑥 to the function:

𝑓ଶ = 𝑓ଵ ⊕ 𝑥
If in our example 𝑥ଶ is added, resulting function is:
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥 ⊕ 𝑥ଶ

F. Permutation of variables

Permutation of variables is defined as the interchange of two
input variables 𝑥 ↔ 𝑥 , where 𝑖 ≠ 𝑗.

𝑓ଶ൫𝑥ଵ, … , 𝑥 , … , 𝑥 , … , 𝑥൯ = 𝑓ଵ൫𝑥ଵ, … , 𝑥 , … , 𝑥 , … , 𝑥൯
In the given example if we interchange input variables 𝑥ଷ

and 𝑥 the resulting function is:
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑓ଵ(𝑥ଵ, 𝑥ଶ, 𝑥, 𝑥ସ, 𝑥ହ, 𝑥ଷ)
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑥ଵ𝑥ଶ ⊕ 𝑥𝑥ସ ⊕ 𝑥ହ𝑥ଷ

G. Generalized spectral translation

The generalized spectral translation is defined for the
function 𝑓 which has 𝑛 variables (𝑛 = 2 ∗ 𝑘, 𝑘 ≥ 3) and
contains 𝑛/2 disjoint quadratic terms:

𝑓(𝑥ଵ, . . , 𝑥) = ⋯ 𝑥భ
𝑥భ

⊕ 𝑥మ
𝑥మ

⊕ … ⊕ 𝑥/మ
𝑥/మ

Performing generalized spectral translation on function 𝑓
adds a new term 𝑥భ

𝑥మ
… 𝑥/మ

 where

 𝑘ଵ ∈ {𝑖ଵ, 𝑗ଵ}, 𝑘ଶ ∈ {𝑖ଶ, 𝑗ଶ}, … , 𝑘/ଶ ∈ {𝑖/ଶ, 𝑗/ଶ}.
If the starting function is 𝑓ଵ is and if 𝑘ଵ = 1, 𝑘ଶ =

3, and 𝑘ଷ = 6, resulting function 𝑓ଶ is:
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥 ⊕ 𝑥ଵ𝑥ଷ𝑥

IV. OSCAR-BENT FUNCTIONS

The bent function which does not have linear and constant
members can be called Oscar-Bent function (the name derives
from Oscar Rothaus, who first defined bent functions). For the
bent function defined in (1), we can derive the Oscar-Bent
function shown in (2) by using invariant spectral operations.

𝑓ଵ(𝑥ଵ, … , 𝑥) = 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥 ⊕ 𝑥ଵ ⊕ 1 (1)
𝑓ଶ(𝑥ଵ, … , 𝑥) = 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥 (2)

To transform a bent function to its Oscar-Bent function we
need to remove linear and constant members, which is done by
using two invariant spectral operations: function complement
and spectral translation. By counting only Oscar-Bent
functions, we can deduce that the number of unique bent
functions found with this algorithm is calculated by multiplying
the number of Oscar-Bent functions with 2ାଵ. The multiplier
is found by calculating all possible combinations using two
invariant operations mentioned above.

V. GENETIC ALGORITHM

Genetic algorithm is a subclass of Evolutionary algorithm
(EA), which is a subclass of Evolutionary computation and
belongs to set of general stochastic search algorithm [10].

Population in both Genetic algorithms and in nature
represents the set of individuals who are trying to survive and
pass on their genes to the next generations. An individual can
be interpreted as a set of genes and abilities, and how fit they
are to survive in the current population and habitat. If we
observe an individual as a solution to a problem, as well as in
nature, optimization (survival of the fittest) will transpire, in the
end, the fittest individual will represent an optimized solution
to the problem. Given a population of individuals within some
environment that has limited resources, competition for those
resources causes natural selection (survival of the fittest). This
in turn causes a rise in the fitness of the population. Given a
quality function to be maximized, we can randomly create a set
of candidate solutions, i.e., elements of the function’s domain.
We then apply the quality function to these as an abstract fitness
measure – the higher the better. Based on these fitness values
some of the better candidates are chosen to seed the next
generation. This is done by applying recombination and/or
mutation to them. Recombination is an operator that is applied
to two or more selected candidates (the so-called parents),
producing one or more new candidates (the children). The
mutation is applied to one candidate and results in one new
candidate. Therefore, executing the operations of
recombination and mutation on the parents leads to the creation
of a set of new candidates (the offspring). These have their
fitness evaluated and then compete – based on their fitness (and
possibly age) – with the old ones for a place in the next
generation. This process can be iterated until a candidate with
sufficient quality (a solution) is found or a previously set
computational limit is reached [11].

The genetic algorithm can be described by the pseudo-code
in Fig. 1.

VII1.2 Page 2 of 4

InitializePopulation();
EvaluatePopulation();
while i < MaxIteration and
BestFitness < MaxFitness do
 Fitness = FitnessCalculation();
 Selection();
 ParentSelection();
 Reproduction();
 i++;
 BestFitness = Max(Fitness);
end while
return BestFitness

Fig. 1. Pseudo code detailing the genetic algorithm

A. Parent selection

Parent selection represents a strategy of selecting good
parents to get a better next generation. The strategy should
consist of some random chance in selection, so diverse parents
will be used, and we can diverge from the local maximum
(which can be reached by using the same group of parents).

- There are different strategies, for this paper, we have
used:

- Roulette selection – odds of selection are determined
by individual fitness and a corresponding piece of the
roulette wheel is given; a random number is generated
to represent a ball spin.

- Rang selection – is like Roulette selection, but fitness
is scaled to give more chances to weaker individuals.

- Tournament selection – from a randomly selected
group of individuals the best individual is chosen
based on fitness.

B. Recombination and mutation

Recombination and mutation are used to produce a new
solution to find the best one which solves the problem. Both
methods may and may not be performed (based on chance
which is determined on startup).

There are several recombination methods, but the most
common is a crossover with one crossover point which is
randomly selected. Genes from the first parent are copied to the
crossover point, after which genes from the second parent are
copied.

Mutation, if performed, results in randomly changing
individual genes. For each gene, independently, it is
determined whether the mutation will be performed or not.

C. Adult selection

Adult selection defines how will the new generation join the
existing group of adults. Since the “habitat” can only sustain an
already defined number of individuals, adult selection is
needed to determine who will survive. Several methods are
implemented:

- Full generational replacement – as the name applies,
the parental generation is replaced with the new
generation.

- Generational mixing – both generations are mixed,
and the best of mixed generations survives.

- Overproduction – this method is a mixture between

full generational replacement and generational
mixing, in which the new generation has twice as
many individuals as the parental generation, and only
a half of the best child individuals survive to form the
new parental generation.

Elitism can also be used, elitism enables keeping the best
solution for the next solution, regardless of chosen adult
selection.

VI. GENETIC ALGORITHM FOR BENT FUNCTIONS

GENERATING

The problem can be defined by finding the most bent
function by using the least number of invariant spectral
operations. Since invariant spectral operations are performed
on a bent function, a starting bent function needs to be defined.
In our case, we start from the disjoint quadratic function.

For each implementation of a genetic algorithm, it is crucial
to define an individual (which represents a solution to a
problem) and a fitness function (which represents how good the
solution is).

A. Individual representation

An individual is represented as a sequence of invariant
operations which are performed on the most recent bent
function.

B. Fitness function

It is recommended that the fitness function should be defined
so it would have a minimum (the worst solution) and the
maximum (the best solution), even though the boundaries can
be arbitrary, the custom is to choose boundaries as 0 and 1.

To determine how good is the solution, we need to go back
to the problem definition which states that we should find the
most unique bent functions for the least number of invariant
spectral operations. From this, we can derive that the fitness
function can be calculated as the number of unique Oscar-Bent
functions divided by the number of used invariant spectral
operations.

By searching for the unique Oscar-Bent functions, we can
generate the most bent functions, given that from the one
Oscar-Bent function we can derive 2ାଵ bent functions.

VII. EXPERIMENTAL RESULTS

The application was developed in C#, and tests were
performed on the laptop with the following configuration:

- CPU: Intel® Core™ i5-8250U CPU @ 1.6GHz
- RAM: 16 GB
- OS: 64bit Windows 10

Multiple parameters can be changed, and which can
influence results (both performance and result wise). Testing
all permutations of the possible combination of parameters is
not a trivial task, and it is time-consuming. Therefore, some
parameters were hardcoded with values that we perceived as
best with our experience and using educated guesses.

Parameters that were hardcoded for all tests:
- Adult selection – Generational mixing

VII1.2 Page 3 of 4

- Parent selection – Tournament selection
o Tournament size – 20% of the population

- Possibility of gene mutation – 10%
- Possibility of recombination – 90%

A. Test 1 – Different number of genes

In this test we have chosen the number of variables to equal
6, population size is set to 10, and the number of generations is
limited to 100. In this test, we will change the number of genes
and compare the number of unique Oscar-Bent functions in an
average of 5 runs. Results are shown in Table I.

TABLE I.

RESULTS OF TEST 1

Number
of genes

Number of generated OBF Time (s)

100 97.8 0.066

1 000 948.4 0.454

10 000 9 364.4 8.31

100 000 92 058 82.724

Through a different number of genes, we have seen that with

linear growth of the number of genes, the number of unique
Oscar-Bent functions grows in a linear fashion, with the growth
factor between 9.5 and 10. When we analyze the time needed,
it grows exponentially which is expected since the solution
space grows exponentially as well.

B. Test 2 – Different number of variables

As in the previous test, the population size is set to 100, the
number of generations is limited to 100 and the number of
genes to 10 000. Here we will fluctuate number of variables.
Results are shown in Table II.

TABLE II.

RESULTS OF TEST 2

n Number of generated OBF Time (s)
8 9 652.6 16
10 9 786.8 35.316
12 9 834.4 111.346

14 9 881.2 413.6

While an increasing number of variables we can observe that

the number of unique Oscar-Bent functions increase with low
percentages. Factor of growth for the time needed increases
with each step, but it does not increase exponentially.

C. Test 3 – Application limits

In this test, we emphasized the performance limits of the
application, not to the numbers we have, therefore we have run
this test only once. Here, we have kept the number of genes to
10 000 and the number of generations to 100, as in the last test.
But we have changed population size to 100. The results are
shown in Table III.

TABLE III.
RESULTS OF TEST 3

n Number of generated OBF Time (s)

8 9 673 169.18

10 9 768 405.08s

12 9 845 1318.69s

14 9 877 1801.56s

16 N/A N/A

VIII. CONCLUSION

We have seen that the usage of Genetic algorithm can be
used in the generation of new bent functions. The performance
of this approach indicates that future work can give promising
results.

Memory is the biggest obstacle when working with bent
functions. This problem can be approached by tracking only
Oscar-Bent functions, which is performed in this paper.
Further, all functions are kept in memory, which is a problem
when expecting many unique Oscar-Bent functions, which we
have seen in test 3. Future work will address this problem.

REFERENCES

[1] O. S. Rothaus, “On “Bent” Functions”, Journal of Combinatorial Theory,
Series A, Vol. 20. No. 3, pp. 300-305, 1976.

[2] H. Dobbertin, “Construction of bent functions and balanced Boolean
functions with high nonlinearity”, LCNS, vol. 1008, pp. 61-74, Springer,
Berlin, Germany, 1995.

[3] J. Climent, F. Garcia, V. Requena, “On the iterative construction of bent
functions”, in Proc. of the 5th WSEAS Int. Conf. on Inf. Security and
Privacy (ISP06), pp. 15–18 World Scientific and Engineering Academy
and Society (WSEAS), Wisconsin, USA, 2006

[4] J. Climent, F. Garca, V. Requena, “On the construction of bent functions
of n+2 variables from bent functions of n variables”, Advances in
Mathematics of Communications, vol. 2, pp. 421–431, 2008.

[5] C. Carlet, “A larger class of cryptographic Boolean functions via a study
of the Maiorana McFarland construction”, LNCS, vol. 2442. pp. 549-564,
Springer, 2002.

[6] H. Dobbertin, G. Leander, A. Canteaut, C. Carlet, P. Felke, P. Gaborit,
“Construction of bent functions via niho power functions”, Journal of
Combinatorial Theory, vol. 113, no. 5, pp. 779–798, 2006.

[7] M. Stanković, C. Moraga, R. Stanković, “Some Invariant spectral
Operations for Functions with Disjoint Products in the Polynomial
Form”, in Proc. EUROCAST 2017, LNCS, Vol. 10672, pp. 262-269,
Springer, 2017.

[8] S. Stojković, M. Stanković, C. Moraga, R. Stanković, “Generation of
Binary Bent Functions by Walsh Invariant spectral Operations Performed
in Reed-Muller Domain”, Proceedings of 13th International Workshop
on Boolean Problems, Bremen, Germany, pp. 255-266, September 19-21.
2018.

[9] R. S. Stanković, M. Stanković, C. Moraga and J. T. Astola, "Construction
of Ternary Bent Functions by FFT-like Permutation Algorithms", 2020
IEEE 50th International Symposium on Multiple-Valued Logic
(ISMVL), pp. 88-93, 2020.

[10] P. A. Vikhar, "Evolutionary algorithms: A critical review and its future
prospects," 2016 International Conference on Global Trends in Signal
Processing, Information Computing and Communication (ICGTSPICC),
Jalgaon, India, pp. 261-265, 22-24 Dec. 2016.

[11] A.E. Eiben, J.E. Smith, “Introduction to Evolutionary Computing”, 2nd
ed., Berlin, Germany: Springer, 2015.

VII1.2 Page 4 of 4

