

Abstract— Internet of Things (IoT) solutions connect large

numbers of devices, which generate various data and control

messages asynchronously. In the IoT system cloud, these

messages need to be queued in order to control the processing

load and prevent the overload in cases of traffic bursts. On the

other hand, one of the requirements the IoT cloud needs to fulfill

is the high availability. Therefore, multiple instances of services

accepting and processing the messages generated by the devices

are needed. There are various message queue technologies

available today, but they all have their limitations. In this paper,

we compare the performance of Apache Kafka and RabbitMQ in

the scenario of the highly available IoT cloud data processing.

Index Terms— message queue; high availability; load

balancing; internet of things.

I. INTRODUCTION

In the past decade, the world is witnessing the expansion of

Internet of Things (IoT) solutions. Within IoT systems,

different devices are connected to perform a certain function

together. IoT use-cases are various, such as smart transport,

smart fabrics, smart cities, smart homes, etc.

In order to collaborate, the devices need to be able to

exchange data such as commands and state change reports.

Although the expansion of IoT has led to the development of

technologies such as ZigBee, Z-Wave, WiFi or Bluetooth

Low Energy, which enabled the connection of many different

actuators and sensors into large local mesh networks, in order

for an IoT solution to achieve its purpose, the existence of the

cloud component is also needed. The cloud allows remote

control and monitoring of the local networks, but it can also

provide advanced features which require processing of larger

quantities of historical system data, or the interaction with

components responsible for customer management, software

update and third-party services.

As the data from the IoT system is generated

asynchronously [1], and processing it requires a certain

amount of time, mechanisms are needed to control the cloud

load. Usually, this control is achieved by deploying various

message queueing systems, that allow to communicate

between different components of the cloud, and react to

Marko Milosavljević is with OBLO Living, Novi Sad, Narodnog fronta

21a, Serbia (e-mail: marko.a.milosavljevic@ obloliving.com).

Milica Matić is with the Faculty of Technical Sciences, University of Novi

Sad, Serbia (e-mail: milica.matic@rt-rk.uns.ac.rs).

Neven Jović is with OBLO Living, Novi Sad, Narodnog fronta 21a, Serbia

(e-mail: neven.jovic@ obloliving.com).

Marija Antić is with the Faculty of Technical Sciences, University of Novi
Sad, Serbia (e-mail: marija.antic@rt-rk.uns.ac.rs).

messages generated by the end devices [2]. Message queuing

technologies which are available today differ in terms of the

performance guarantees they offer, and depending on the

actual use-case, metrics such as latency, disk space, RAM

memory or processor usage may be a limiting factor [2], [3].

The comparison of Kafka and Apache Pulsar has been

performed by the authors in [4], and it has been shown that,

although Apache Pulsar may achieve better results in terms of

resource usage, the maturity of the solution, available

documentation, and possibility to integrate with other data

processing tools, may be a reason to favor Kafka in the

commercial deployment scenarios. On the other hand, Kafka

and RabbitMQ have been compared in [5], to show that

RabbitMQ has its advantages in terms of the achieved

throughput on a single server instance, but the scaling options

are on Kafka’s side.

In this paper, we explore the possibility of replacing the

already implemented RabbitMQ message queueing within the

smart home system cloud [6],[7], with Apache Kafka. Within

the deployed smart home cloud, messages generated by end

devices are processed by multiple cloud services. As the

number of supported features is growing, so is the number of

the cloud services that process these messages. Also, some of

the messages need to be processed by multiple of these

services. Additionally, as the number of users grows, the

system needs to be scaled up, and, as already said, Kafka has

its advantages in this domain. The paper is organized as

follows: in Section II, the elements of smart home system and

its cloud architecture are introduced, then the overview of

RabbitMQ and Kafka is given in Section III and Section IV.

Finally, the performed tests and their results are presented in

Section V.

II. SMART HOME CLOUD DATA BUFFERING

In the existing smart home solution, the end devices within

the household use technologies such as ZigBee, Z-Wave and

ONVIF/IP to connect to the home gateway – Fig. 1. The

gateway is responsible to execute the core system logic: it

implements the middleware which represents all of the

devices in the same way, regardless of the communication

technology they use in the local network, and allows them to

work together, according to the automation rules set up by the

user. To communicate with the user applications and cloud

backend, the gateway uses MQTT protocol. MQTT conveys

commands issued by the user, system control messages, and

reports about device state changes. Control messages are

processed on the cloud side, for the purpose of system

Comparison of Message Queue Technologies

for Highly Available Microservices in IoT

Marko Milosavljević, Milica Matić, Neven Jović, Marija Antić

RTI2.6 Page 1 of 4

administration, upgrade, backup and restore. Also, reports

about device state changes are stored to provide user with the

information about the history of system usage [7].

Fig. 1. Smart home system components and communication between them.

The observed smart home cloud system solution has the

microservice-based architecture. It is highly available (HA),

which means that the entire system is fault tolerant, i.e. that

there are multiple instances of every microservice running [6].

In order to prevent problems with MQTT messages

processing due to the overload of cloud system, or the failure

of some instances, temporary data buffering is necessary. In

the temporary data buffering module all important messages

are first queued, allowing relevant microservices to process

them at their own pace.

In the current implementation, RabbitMQ is used for the

purpose of data buffering. The incoming MQTT messages are

parsed by the B2Q (Broker to Queue) microservice, and

directed to the appropriate RabbitMQ queues, based on the

information they contain. All of the instances of one cloud

microservice share the load of processing the messages from

the RabbitMQ queue they are associated with. The problem

here represents the fact that if one message needs to be

processed in multiple ways (i.e. it is relevant as the input for

multiple cloud microservices), it has to be replicated to

multiple queues. Therefore, in this paper we explore the

possibility of replacing RabbitMQ with Apache Kafka. We

implement the B2K (Broker to Kafka) microservice, which

publishes messages to Kafka queues, that the processing

microservices are subscribed to, and we compare the

performance of the two implementations.

A. RabbitMQ

 RabbitMQ is a message queue manager, which has

originally implemented the Advanced Message Queuing

Protocol (AMQP). Later it was extended to support Streaming

Text Oriented Messaging Protocol (STOMP), Message Queue

Telemetry Transport (MQTT), and other protocols, but

AMQP remains the default and the most widely used one.

RabbitMQ messages can convey any kind of information,

from a simple text message to a message with information

about processes important for the system. Message broker

stores the message into the queue, until the application fetches

it for processing. Message queuing allows web servers to

avoid the overload, as they can control the number of the

messages that are processed simultaneously. It is also useful

for distributing messages to multiple consumers sharing the

load and providing fault tolerance.

Fig. 2. RabbitMQ message delivery mechanism.

Producer applications create the messages, but the

messages are not published directly to a queue. First, the

producer sends the message to the RabbitMQ exchange

running on the broker – Fig. 2. The exchange is responsible

for routing the messages to different queues, based on the

configured bindings and routing keys. Four types of

exchanges exist - direct, topic, fanout and headers exchange.

In the direct exchange, the message is routed to the queue

whose binding key matches the routing key of the message.

The topic exchange does a wildcard match between the

routing key and the routing pattern specified in the binding.

The fanout exchange routes messages to all of the queues

bound to it. The headers exchange uses the message header

attributes for routing. Consumers subscribe to the queues and

process the messages from them. All consumers subscribed to

the same queue will share the load of processing the messages

from that queue. The messages are deleted from the queue

after processing.

B. Apache Kafka

Apache Kafka is an event streaming platform. It is elastic,

distributed, highly scalable and fault-tolerant. Similar to

RabbitMQ, Kafka has the client and server side. Kafka clients

and servers communicate using TCP protocol.

 Kafka implements the publish/subscribe mechanism, and

allows processing streams of events as they arrive into the

system or retrospectively, but also allow to store streams of

events as long as they are needed.

Fig. 3. Kafka message processing mechanism.

RTI2.6 Page 2 of 4

Similar to RabbitMQ, the Apache Kafka clients can act as

producers and consumers – Fig. 3. Producers represent client

applications that write (publish) events to Kafka. On the other

hand, consumers are subscribing to topics, reading and writing

events. Producers and consumers are not aware of each other.

They work completely independently, and that is a key design

to achieve high scalability. Therefore, producers will never

need to wait for consumers.

When data is written to Kafka, it is written in the form of an

event containing the key, value, timestamp and optional

metadata. Events are stored in topics. The durability of events

inside Kafka’s topic is configurable. Unlike RabbitMQ, Kafka

events can be read whenever they are needed, because events

are not deleted after consumptions. Events can be stored as

long as needed. Storing data for a long time does not affect

Kafka.

Topics in Kafka are partitioned, and one Kafka topic can

have any number of partitions defined in the Kafka

configuration file. Events are ordered inside the partition in

the exactly same order as they were written, and one

consumer can process data from one partition only. However,

the data stored in one partition can be processed by multiple

consumers belonging to different consumer groups, i.e. one

message can be processed multiple times, without the need to

duplicate it. Offset is an integer number that is used to

maintain the current position of a consumer inside partition.

Every topic can be replicated, so that there are dozens of

brokers that have a copy of data. This makes data fault-

tolerant and highly-available.

III. TESTING AND RESULTS

Tests were designed to measure CPU load of smart home

system servers when RabbitMQ and Apache Kafka are used

for data buffering. RabbitMQ and Kafka brokers were run on

the 8-core Intel i7 processor with 8 GB of RAM memory.

TABLE I

RABBITMQ TEST RESULTS

Setup
CPU usage on 8 cores [%]

average maximum deviation

16 producers

8 queues

0 consumers

324 640 108

16 producers

8 queues

8 consumers
410 794 197

16 producers

8 queues

16 consumers
486 800 167

16 producers

8 queues

32 consumers
553 800 147

To test the RabbitMQ buffering, 16 producer B2Q

processes were created, that published messages to 8 queues.

The messages from these queues were processed by a variable

number of consumers (0, 8, 16, 32). Producers were

configured to publish messages every 1 ms. Test results are

presented in Table I.

RabbitMQ reached CPU limit after 16 consumers, but was

able to continue working stably, while the setup with 32

consumers stopped working after ten minutes. The throughput

of the system was approximately 11000 messages per second.

Maximum CPU usage was 800%, i.e. all eight cores were

used 100%.

To test Kafka performance, 16 producers were created,

which published to the variable number of partitions (32, 64,

128). Since Kafka allows only one consumer per partition, the

number of consumers was also varied from 0 to 128. Test

results are presented in Table II.

In any of test cases limit of Kafka maximum CPU load was

not reached. It can be observed that the CPU usage deviation

is smaller than in RabbitMQ case. Therefore, the server stays

stable, even as the number of messages that are stored in

Kafka increases with time.

TABLE II

KAFKA TEST RESULTS

Setup
CPU usage on 8 cores [%]

average maximum deviation

 16 producers

 32 partitions

 0 consumers

210 573 65

 16 producers

 32 partitions

 32 onsumers
202 347 43

 16 producers

 64 partitions

 0 consumers
186 473 90

 16 producers

 64 partitions

 64 consumers
208 360 37

 16 producers

128 partitions

 0 consumers

150 300 93

 16 producers

128 partitions

128 consumers

480 553 53

IV. CONCLUSION

This paper gave a brief description of some of the message

queueing technologies that can be used for flow control and

load balancing in the IoT scenario. RabbitMQ and Apache

Kafka were deployed within the smart home system cloud,

and their performance was tested for a variable number of

consumers.

The presented test results indicate that data buffering in

Kafka is highly stable and has the lower average CPU usage.

At any point of testing, maximum CPU usage was never

reached. Therefore, in our further work we will focus on

integrating Kafka in the data collection and storage module of

the smart home system. Using Kafka will allow us to process

the same messages multiple times, without the need to

duplicate data. This, in turn, opens the possibility to create

advanced data processing scenarios which may bring added

value to the users of the smart home system.

RTI2.6 Page 3 of 4

V. ACKNOWLEDGMENT

This research (paper) has been supported by the Ministry of

Education, Science and Technological Development through

the project no. 451-03-68/2020-14/200156: “Innovative

scientific and artistic research from the FTS (activity)

domain”.

REFERENCES

[1] F. Metzger, T. Hoßfeld, A. Bauer, S. Kounev and P. E. Heegaard,
“Modeling of Aggregated IoT Traffic and Its Application to an IoT

Cloud,” Proceedings of the IEEE, vol. 107, no. 4, pp. 679-694, April

2019
[2] G. Fu, Y. Zhang and G. Yu, “A Fair Comparison of Message Queuing

Systems,” IEEE Access, vol. 9, pp. 421-432, Jan. 2021

[3] H. Wu, Z. Shang and K. Wolter, “Performance Prediction for the
Apache Kafka Messaging System,” Proc. of IEEE

HPCC/SmartCity/DSS, Aug. 2019

[4] S. Intorruk and T. Numnonda, “A Comparative Study on Performance

and Resource Utilization of Real-time Distributed Messaging Systems

for Big Data,” Proc. of IEEE/ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), July 2019
[5] P. Dobbelaere and K. S. Esmaili, “Kafka versus RabbitMQ: A

comparative study of two industry reference publish/subscribe

implementations: Industry Paper,” Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems

(DEBS '17), June 2017

[6] M. Matić, E. Nan, M. Antić, S. Ivanović and R. Pavlović, “Model-
Based Load Testing in the IoT System,” Proc. of International

Conference on Consumer Electronics (ICCE-Berlin), Sept. 2019

[7] S. Ivanović, M. Antić, I. Papp, N. Jović, “Data Acquisition, Collection
and Storage in Smart Home Solutions,” Proc. of 6th International

Conference on Electrical, Electronic and Computing Engineering

(IcETRAN), May 2019

RTI2.6 Page 4 of 4

