
 

  

Abstract— Internet of Things (IoT) solutions connect large 

numbers of devices, which generate various data and control 

messages asynchronously. In the IoT system cloud, these 

messages need to be queued in order to control the processing 

load and prevent the overload in cases of traffic bursts. On the 

other hand, one of the requirements the IoT cloud needs to fulfill 

is the high availability. Therefore, multiple instances of services 

accepting and processing the messages generated by the devices 

are needed. There are various message queue technologies 

available today, but they all have their limitations. In this paper, 

we compare the performance of Apache Kafka and RabbitMQ in 

the scenario of the highly available IoT cloud data processing.  

 
Index Terms— message queue; high availability; load 

balancing; internet of things.  

 

I. INTRODUCTION 

In the past decade, the world is witnessing the expansion of 

Internet of Things (IoT) solutions. Within IoT systems, 

different devices are connected to perform a certain function 

together. IoT use-cases are various, such as smart transport, 

smart fabrics, smart cities, smart homes, etc.  

In order to collaborate, the devices need to be able to 

exchange data such as commands and state change reports. 

Although the expansion of IoT has led to the development of 

technologies such as ZigBee, Z-Wave, WiFi or Bluetooth 

Low Energy, which enabled the connection of many different 

actuators and sensors into large local mesh networks, in order 

for an IoT solution to achieve its purpose, the existence of the 

cloud component is also needed. The cloud allows remote 

control and monitoring of the local networks, but it can also 

provide advanced features which require processing of larger 

quantities of historical system data, or the interaction with 

components responsible for customer management, software 

update and third-party services.  

As the data from the IoT system is generated 

asynchronously [1], and processing it requires a certain 

amount of time, mechanisms are needed to control the cloud 

load. Usually, this control is achieved by deploying various 

message queueing systems, that allow to communicate 

between different components of the cloud, and react to 
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messages generated by the end devices [2]. Message queuing 

technologies which are available today differ in terms of the 

performance guarantees they offer, and depending on the 

actual use-case, metrics such as latency, disk space, RAM 

memory or processor usage may be a limiting factor [2], [3]. 

The comparison of Kafka and Apache Pulsar has been 

performed by the authors in [4], and it has been shown that, 

although Apache Pulsar may achieve better results in terms of 

resource usage, the maturity of the solution, available 

documentation, and possibility to integrate with other data 

processing tools, may be a reason to favor Kafka in the 

commercial deployment scenarios. On the other hand, Kafka 

and RabbitMQ have been compared in [5], to show that 

RabbitMQ has its advantages in terms of the achieved 

throughput on a single server instance, but the scaling options 

are on Kafka’s side.  

In this paper, we explore the possibility of replacing the 

already implemented RabbitMQ message queueing within the 

smart home system cloud [6],[7], with Apache Kafka. Within 

the deployed smart home cloud, messages generated by end 

devices are processed by multiple cloud services. As the 

number of supported features is growing, so is the number of 

the cloud services that process these messages. Also, some of 

the messages need to be processed by multiple of these 

services. Additionally, as the number of users grows, the 

system needs to be scaled up, and, as already said, Kafka has 

its advantages in this domain. The paper is organized as 

follows: in Section II, the elements of smart home system and 

its cloud architecture are introduced, then the overview of 

RabbitMQ and Kafka is given in Section III and Section IV. 

Finally, the performed tests and their results are presented in 

Section V. 

II. SMART HOME CLOUD DATA BUFFERING 

In the existing smart home solution, the end devices within 

the household use technologies such as ZigBee, Z-Wave and 

ONVIF/IP to connect to the home gateway – Fig. 1. The 

gateway is responsible to execute the core system logic: it 

implements the middleware which represents all of the 

devices in the same way, regardless of the communication 

technology they use in the local network, and allows them to 

work together, according to the automation rules set up by the 

user. To communicate with the user applications and cloud 

backend, the gateway uses MQTT protocol. MQTT conveys 

commands issued by the user, system control messages, and 

reports about device state changes. Control messages are 

processed on the cloud side, for the purpose of system 
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administration, upgrade, backup and restore. Also, reports 

about device state changes are stored to provide user with the 

information about the history of system usage [7]. 

 
Fig. 1. Smart home system components and communication between them. 

 

The observed smart home cloud system solution has the 

microservice-based architecture. It is highly available (HA), 

which means that the entire system is fault tolerant, i.e. that 

there are multiple instances of every microservice running [6]. 

In order to prevent problems with MQTT messages 

processing due to the overload of cloud system, or the failure 

of some instances, temporary data buffering is necessary. In 

the temporary data buffering module all important messages 

are first queued, allowing relevant microservices to process 

them at their own pace.  

In the current implementation, RabbitMQ is used for the 

purpose of data buffering. The incoming MQTT messages are 

parsed by the B2Q (Broker to Queue) microservice, and 

directed to the appropriate RabbitMQ queues, based on the 

information they contain. All of the instances of one cloud 

microservice share the load of processing the messages from 

the RabbitMQ queue they are associated with. The problem 

here represents the fact that if one message needs to be 

processed in multiple ways (i.e. it is relevant as the input for 

multiple cloud microservices), it has to be replicated to 

multiple queues. Therefore, in this paper we explore the 

possibility of replacing RabbitMQ with Apache Kafka. We 

implement the B2K (Broker to Kafka) microservice, which 

publishes messages to Kafka queues, that the processing 

microservices are subscribed to, and we compare the 

performance of the two implementations. 

A. RabbitMQ  

 RabbitMQ is a message queue manager, which has 

originally implemented the Advanced Message Queuing 

Protocol (AMQP). Later it was extended to support Streaming 

Text Oriented Messaging Protocol (STOMP), Message Queue 

Telemetry Transport (MQTT), and other protocols, but 

AMQP remains the default and the most widely used one.  

RabbitMQ messages can convey any kind of information, 

from a simple text message to a message with information 

about processes important for the system. Message broker 

stores the message into the queue, until the application fetches 

it for processing. Message queuing allows web servers to 

avoid the overload, as they can control the number of the 

messages that are processed simultaneously. It is also useful 

for distributing messages to multiple consumers sharing the 

load and providing fault tolerance. 

 

 
Fig. 2.  RabbitMQ message delivery mechanism. 

 

Producer applications create the messages, but the 

messages are not published directly to a queue. First, the 

producer sends the message to the RabbitMQ exchange 

running on the broker – Fig. 2. The exchange is responsible 

for routing the messages to different queues, based on the 

configured bindings and routing keys. Four types of 

exchanges exist - direct, topic, fanout and headers exchange. 

In the direct exchange, the message is routed to the queue 

whose binding key matches the routing key of the message. 

The topic exchange does a wildcard match between the 

routing key and the routing pattern specified in the binding. 

The fanout exchange routes messages to all of the queues 

bound to it. The headers exchange uses the message header 

attributes for routing. Consumers subscribe to the queues and 

process the messages from them. All consumers subscribed to 

the same queue will share the load of processing the messages 

from that queue. The messages are deleted from the queue 

after processing. 

B. Apache Kafka 

Apache Kafka is an event streaming platform. It is elastic, 

distributed, highly scalable and fault-tolerant. Similar to 

RabbitMQ, Kafka has the client and server side. Kafka clients 

and servers communicate using TCP protocol.  

 Kafka implements the publish/subscribe mechanism, and 

allows processing streams of events as they arrive into the 

system or retrospectively, but also allow to store streams of 

events as long as they are needed. 

 

 
Fig. 3.  Kafka message processing mechanism. 
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Similar to RabbitMQ, the Apache Kafka clients can act as 

producers and consumers – Fig. 3. Producers represent client 

applications that write (publish) events to Kafka. On the other 

hand, consumers are subscribing to topics, reading and writing 

events. Producers and consumers are not aware of each other. 

They work completely independently, and that is a key design 

to achieve high scalability. Therefore, producers will never 

need to wait for consumers.  

When data is written to Kafka, it is written in the form of an 

event containing the key, value, timestamp and optional 

metadata. Events are stored in topics. The durability of events 

inside Kafka’s topic is configurable. Unlike RabbitMQ, Kafka 

events can be read whenever they are needed, because events 

are not deleted after consumptions. Events can be stored as 

long as needed. Storing data for a long time does not affect 

Kafka.  

Topics in Kafka are partitioned, and one Kafka topic can 

have any number of partitions defined in the Kafka 

configuration file. Events are ordered inside the partition in 

the exactly same order as they were written, and one 

consumer can process data from one partition only. However, 

the data stored in one partition can be processed by multiple 

consumers belonging to different consumer groups, i.e. one 

message can be processed multiple times, without the need to 

duplicate it. Offset is an integer number that is used to 

maintain the current position of a consumer inside partition. 

Every topic can be replicated, so that there are dozens of 

brokers that have a copy of data. This makes data fault-

tolerant and highly-available.  

III.   TESTING AND RESULTS 

Tests were designed to measure CPU load of smart home 

system servers when RabbitMQ and Apache Kafka are used 

for data buffering. RabbitMQ and Kafka brokers were run on 

the 8-core Intel i7 processor with 8 GB of RAM memory. 

 
TABLE I 

RABBITMQ TEST RESULTS 

 

Setup 
CPU usage on 8 cores [%] 

average maximum deviation 

16 producers 

8 queues 

0 consumers 

324 640 108 

16 producers 

8 queues 

8 consumers 
410 794 197 

16 producers 

8 queues 

16 consumers 
486 800 167 

16 producers 

8 queues 

32 consumers 
553 800 147 

 

To test the RabbitMQ buffering, 16 producer B2Q 

processes were created, that published messages to 8 queues. 

The messages from these queues were processed by a variable 

number of consumers (0, 8, 16, 32). Producers were 

configured to publish messages every 1 ms. Test results are 

presented in Table I. 

RabbitMQ reached CPU limit after 16 consumers, but was 

able to continue working stably, while the setup with 32 

consumers stopped working after ten minutes. The throughput 

of the system was approximately 11000 messages per second. 

Maximum CPU usage was 800%, i.e. all eight cores were 

used 100%. 

To test Kafka performance, 16 producers were created, 

which published to the variable number of partitions (32, 64, 

128). Since Kafka allows only one consumer per partition, the 

number of consumers was also varied from 0 to 128. Test 

results are presented in Table II. 

In any of test cases limit of Kafka maximum CPU load was 

not reached. It can be observed that the CPU usage deviation 

is smaller than in RabbitMQ case. Therefore, the server stays 

stable, even as the number of messages that are stored in 

Kafka increases with time.  

 
TABLE II 

KAFKA TEST RESULTS 

 

Setup 
CPU usage on 8 cores [%] 

average maximum deviation 

 16 producers 

 32 partitions 

  0 consumers 

210 573 65 

 16 producers 

 32 partitions 

 32 onsumers 
202 347 43 

 16 producers 

 64 partitions 

 0 consumers 
186 473 90 

 16 producers 

 64 partitions 

 64 consumers 
208 360 37 

 16 producers 

128 partitions 

  0 consumers 

150 300 93 

 16 producers 

128 partitions 

128 consumers 

480 553 53 

 

IV. CONCLUSION 

This paper gave a brief description of some of the message 

queueing technologies that can be used for flow control and 

load balancing in the IoT scenario. RabbitMQ and Apache 

Kafka were deployed within the smart home system cloud, 

and their performance was tested for a variable number of 

consumers. 

The presented test results indicate that data buffering in 

Kafka is highly stable and has the lower average CPU usage. 

At any point of testing, maximum CPU usage was never 

reached. Therefore, in our further work we will focus on 

integrating Kafka in the data collection and storage module of 

the smart home system. Using Kafka will allow us to process 

the same messages multiple times, without the need to 

duplicate data. This, in turn, opens the possibility to create 

advanced data processing scenarios which may bring added 

value to the users of the smart home system.   
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