

Abstract— Syntax analysis is an important part of natural
language processing. The biggest challenge to defining a natural
language syntax analyzer is the inability to define unambiguous
formal grammars that describe the language. Because of this,
rule-based syntax analyzers need to be enhanced using statistics
to allow us to predict which syntax tree is most likely. In order
to do this, a corpus of tagged sentences in the target language is
needed. The creation of this corpus is long and tedious work.
Because of this, this paper implements a visual tool for creating
such a corpus for the Serbian language. A component of this tool
is the syntax analyzer, which generates all the possible syntax
trees based on the defined grammar such that an expert may
choose one of them. The expert may also create entirely new
syntax trees.

Index Terms—Natural language processing (NLP); Syntax

analysis; CYK; Annotated syntactic corpora; Serbian language

I. INTRODUCTION
Natural language processing is a branch of computer

science that teaches computers to understand and manipulate
human language. Natural language processing is a
combination of computer science, linguistics and machine
learning. Many NLP techniques are already developed and
applied for the English language but applying those
techniques to different languages can be quite a challenge.
Serbian language is under-researched in the context of natural
language processing. Since the Serbian language and the
English language do not belong to the same language group,
many approaches designed for the English language need to
be significantly modified in order to be used in the Serbian
language or cannot be used at all.

Syntax analysis or parsing, in general, is the process of
analyzing character strings according to the rules of a given
formal grammar. It is typically encountered in fields of
natural languages, computer languages or data structures. In
Natural language processing, syntax analysis is one of the
most important phases because it builds a great foundation to
natural language understanding. Syntax analysis decides
whether a sentence written in natural language conforms to
the rules of a formal grammar and thus whether a sentence is
valid or not. Designing a quality syntax parser is extremely
significant for designing a semantical analyzer, since syntax
parsing precedes semantic analysis. Also, syntax analysis has
its own role in Rule-based Machine Translation, Information
Extraction, Question Answering systems, etc.

Teodora Đorđević is with the Faculty of Electronic Engineering,
University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
teodora.djordjevic@elfak.ni.ac.rs).

Suzana Stojković is with the Faculty of Electronic Engineering,
University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
suzana.stojkovic@elfak.ni.ac.rs).

This paper describes designing a graphic tool for syntax
analysis of the Serbian language based on the syntax analyzer
designed in [1]. This tool is implemented as a web application
that can analyze and visualize sentences using the
implemented parser. It also enables the user to draw
completely new syntax trees and save them.

II. RELATED WORK
In linguistics, a corpus usually represents a collection of

texts. The main purpose of a corpus is to be used as a tool in
language study. In order to study and analyze language data,
having a corpus is essential.

The English language is most widely researched language
and thus the largest number of corpora exists for the English
language.

Corpora contain texts that are sourced from natural
contexts in order to be as close to the natural language as
possible. There are many types of corpora that are used in
natural language processing such as reference corpora, which
are fairly balanced sets of texts that accurately describe a
standard language, or specialized corpora which contain texts
from a particular area, such as movie reviews, magazine texts,
etc. A very important category of corpora are annotated
corpora which contain additional information such as part of
speech tags, lemmas, metadata, additional tags, etc.
Annotated corpora can thus be used in supervised learning
scenarios when attempting to infer this additional data based
on the text given.

There are many publicly available corpora online for
various languages. These corpora can be accessed either
directly online via web browser, through specialized APIs to
search the corpora, or can also be downloaded in their
entirety.

Most modern language processing is done using
computers. This means that modern corpora must be
electronically readable documents. The first such document
for the English language was The Brown Corpus of Standard
American English [2]. This corpus consists of one million
words of American English texts printed in 1961. In order to
ensure high quality and to make the corpus useful for a wide
range of applications, the corpus compiled texts from 15
different categories. Keeping in mind the huge increase in
processing power, as well as that the Internet generates more
linguistical data than ever before, this corpus is now
considered small.

An example of a modern corpus of the English language
that is quite big is the Corpus of Contemporary American
English (COCA) [3]. COCA is probably the most widely used
corpus of English, with over one billion words. Many corpora
for the English language can be found at [4].

Besides the English language many other languages of the
world are being researched in the field of syntax and semantic

A Tool for Sentence Syntax Structure Markup
for The Serbian Language

Teodora Đorđević, Suzana Stojković University of Niš, Faculty of Electronic Engineering

RTI1.4 Page 1 of 5

analysis and are thus being compiled into language specific
corpora. One such corpus is the Quranic Arabic Corpus [5],
which is an annotated linguistic document, that shows the
Arabic grammar, syntax and morphology for each word in the
Quran. The research paper [6] describes a specialized
annotated corpus for the Chinese language, used for
analyzing clinical texts. This corpus is annotated with part-
of-speech tags, syntactic tags, entities, assertions, and
relations.

For the Serbian language, given that it is spoken by only
12 million people in the world as a first language, there is not
a large number of corpora such as English or Chinese. In the
last few years, there has been development of open, freely
available resources and technologies for computer processing
of texts in the Serbian language. This includes annotated
language corpora and some of the corpora are listed below.

1. SETimes.SR [7] – it is based on the SETimes parallel
corpus of newspaper articles. This is a manually
annotated corpus of texts written in the standard
Serbian language. This corpus is used for training and
evaluation of computer models on a number of natural
language processing problems. It contains 3891
sentences. The SETimes.SR corpus is annotated using
morphosyntactic notation, lemmas, syntactic
dependencies, and named entities.

2. srWac [8] - the Serbian web corpus, which was built
by crawling the .rs top-level domain in 2014. It
contains 555 million tokens and over 25 million
sentences arranged in about 1.3 million documents.

3. MULTEXT-East [9] - is a multilingual dataset for
language research. This project consists of mainly
Central and Eastern European languages, including
Serbian.

4. ReLDI-NormTagNER-sr 2.1 [10] - is a manually
annotated corpus of Serbian tweets. It is meant for use
in the fields of tokenization, sentence segmentation,
word normalization, morphosyntactic tagging,
lemmatization and named entity recognition of non-
standard Serbian.

As mentioned earlier, there is a corpus that has marked
dependency syntax at the sentence level, but there is still no
corpus for the Serbian language that contains fully marked
syntax trees. Precisely for this reason, the idea arose to create
such a tool that will enable the creation of a corpus of
syntactic trees for the Serbian language.

There are some visualization tools for drawing syntax
trees, but they are mostly limited to inputting a syntax tree,
and then getting a visualization of that tree. The tools which
expect user to enter syntax trees and then visualize it are
shown here [11, 12]. The tool where the user can draw syntax
tree from scratch is TreeForm [13]. This tool offers wide
palette of elements that can be drawn in order to create a
syntax tree. There are several simpler solutions than
TreeForm, such as [14][15]. All these tools are only intended
for visualizing syntax trees. They do not support using a
syntax parser in the background, which would generate
syntax trees based on the entered sentence as suggested in this
paper.

III. THE FUNCTIONALITY OF THE NOTATION TOOL

A. Syntax Analyzer
The parser that was created in [1] achieved excellent

performance and performed real-time parsing. This parser
consists of three components:

Fig. 1. The Architecture of Notation tool

RTI1.4 Page 2 of 5

1. POS Tagger – when a sentence is forwarded to the
syntax analyzer it is necessary to extract POS tags
first, because a syntax analyzer can only recognize
tags, not actual words. This tagger is explained in
detail in [1]. The tagger returns tags that have special
meaning. For example, some of the valid tags are ‘nn’
(noun in nominative), ‘vm’ (main verb), ‘sl’
(preposition in front of locative). Every POS of the
Serbian language has its own abbreviation, where
every letter has its own meaning. These tags are then
forwarded to syntax analyzer, and later displayed in
syntax trees above actual words of the sentence.

2. CYK Parser – this parser is implemented to achieve
optimal performances while analyzing sentences.
Also, this parser, as defined in [1], is capable of
recognizing all the syntax trees, like the parser in
NLTK [16], but with significantly reduced parsing
time.

3. Postprocessor – this layer is added because the
number of syntax trees that are generated based on
grammar designed for CYK Parser was large. To
reduce this number, a series of rules is defined. These
rules eliminate syntax trees that aren’t consistent with
Serbian grammar. The postprocessing phase reduced
the number of syntax trees by 54%.

The problem with this syntax analyzer, despite adding a
postprocessing phase, is that it generated multiple trees for a
single sentence. In order to solve this problem, it is necessary
to add statistics that will enable to generate only one syntax
tree as a result of a syntax analysis. To be able to implement
statistical parsing, it is necessary to have a corpus of marked
sentences, which is not the case for the Serbian language. For
this reason, the idea of creating a visual tool arose. This tool
will enable simple drawing and visualization of syntax trees
and thus lead to the generation of a corpus of marked
sentences that will be used further.

The notation tool works as follows:
1. The user enters the sentence they want to tag
2. The sentence is forwarded for processing to a parser that

returns the resulting syntax trees
3. The syntax trees are displayed to the user
4. The user can choose one of the following options:

• Select the correct tree,
• Change the tree that is the most similar to the

correct tree - by adding nodes, changing the node
name, deleting nodes, and switching places with
nodes, or

• Create a new tree in case all the suggested trees
are wrong

5. The correct tree is uploaded and stored in the database.

The architecture of the implemented system is shown in

Figure 1.
The new component of the syntax analyzer is called

reduction component. This component is added specifically
for this tool.

The grammar created for the Serbian language contains a
huge number of rules because the Serbian language is very
complex. Considering that due to the implementation of the
CYK algorithm, it was also necessary to transform the
grammar so that it would be in Chomsky's normal form, a
large number of auxiliary shifts were introduced. The syntax
tree created in this way was too large to be displayed to the

user of any system and this is the reason for introducing a
reduction component.

This component aims to transform the syntax tree so that it
no longer contains auxiliary rules, as well as that it does not
contain shifts that have been introduced to make syntax
analysis simpler and more robust.

The goal of reduction is to transform the syntax tree,
generated by using a more complex grammar, into a simpler
tree, corresponding to a simpler grammar. The main purpose
for introducing the reduction component is to visualize the
trees in a way that domain experts would expect by
abstracting away implementation details. Also, reduced
syntax trees are smaller and easier to display. After
confirming the final tree for input sentence, it is necessary to
return syntax tree to original form. This is achieved by using
transform component. This component accepts syntax tree in
simpler grammar and transforms that tree to original
grammar. The transformed tree is then forwarded to backend
application and saved in a database.

Figures 2 and 3 show how a part of the syntax tree looks
with and without reduction. The reduced syntax tree is
significantly smaller and thus much easier to display. An
entire syntax tree without reduction would be impossible to
fit in the page of the notation tool. The syntagm shown in
figures 2 and 3 is “Moja divna drugarica”, meaning “my
wonderful friend” in Serbian.

Fig. 2. Part of the syntax tree without reduction

Fig. 3. Part of the syntax tree with reduction

RTI1.4 Page 3 of 5

B. The Notation Tool

This component is implemented as a web application so
that users can use it as easily as possible. This approach was
chosen to avoid any installation. The application itself is
divided into three parts:

1. Frontend

2. Backend

3. Database.
The role of the Frontend is to enable:

1. Entering a sentence whose analysis should be
performed

2. Displaying of all syntax trees generated by the
parser

3. Selecting a syntax tree that is correct - the user can
view a list of all syntax trees that the parser returned
and check the one that is correct. This sends a
request to the server with the intention to save that
tree in the database.

4. Syntax tree modification - if the syntax tree is not
completely correct, but with a few minor changes it
could become correct, the tool offers the possibility
to make the following syntax tree changes:

• adding a new node - it is necessary to select the node
to which we want to add a new descendant and select
the name that will be in that node. After interacting
with the component, the tree structure is
automatically updated to display the changes.

• deleting a node - if it is necessary to remove a node,
the tool offers the option to select that node and then
delete it.

• renaming a node - if the tree structure is adequate
and an element is incorrectly recognized and it has
the wrong name, the tool allows the user to rename
that node.

• swapping nodes - this option exists in case the nodes
are correctly recognized but they have been
misplaced. It is possible to swap the places of these
nodes, but only if they have the same parent. This
option was introduced because a new node is always
added to the end of the list of children, and if the
node is deleted, a new node should be added in its
place. Since the new node is always added as the last
child, this functionality allows the user to place the
node in any arbitrary position.

5. Drawing a completely new tree - the tool offers
space for drawing a new tree, where on one side of
the control there is a list of possible nodes and
arrows for connecting nodes, and on the other side
there is a space for drawing - canvas. It is possible
to transfer nodes from the palette to the drawing
space, as well as to connect these nodes with arrows.
When nodes are added and names are populated, the
tool offers the ability to make a tree structure out of
these nodes, as well as to send that tree further to the
server to be stored in the database.

6. Sending a tree to the database – within the tool
there is a service whose methods are called to
interact with the server.

The role of the backend application is to enable:

1. Route for frontend application where a sentence
can be analyzed – when a frontend application
sends GET request the backend application forwards
this sentence to the syntax analyzer described
earlier. This syntax analyzer is written in Python, so
it is necessary to call Python script which returns
generated syntax trees for given input.

2. Route for saving the chosen tree in the database
– when an expert reviewed the syntax trees and
chose or drew the correct one. This syntax tree is
saved along with tags and sentence that has been
analyzed.

IV. THE EXAMPLES OF THE NOTATION TOOL

Figure 4 shows the welcome page. There is a start analysis

button that a user can click, and this will open a form for
entering the sentence.

Figure 5 shows a form where the user can enter a sentence

for syntax analysis. That sentence is forwarded to the backend
application. The backend application sends the sentence to
the syntax analyzer by calling Python scripts.

The drawing of syntax trees was implemented using the
canvas element in HTML and Canvas API in JavaScript.
Below are shown pictures of different options which this tool
offers.

Fig. 6. One of the syntax trees that parser generated

Figure 6 shows the result that parser returned. As can be
seen there are three syntax trees generated for this

Fig. 4. Welcome page

Fig. 5. Enter sentence form

RTI1.4 Page 4 of 5

sentence. The second syntax tree is shown in figure 4. The
start symbol of the grammar is S, the level below S
represents syntactic structures. After that, there are POS
tags that tagger returned and finally words of the sentence.
The menu above the drawn syntax tree has three options:
1. Interrupting the current analysis and analyzing a new

sentence (leads to the form where the sentence is
entered),

2. A page where it is possible to build a completely new
tree for the current sentence,

3. Confirmation of the current tree - forwarding the
selected tree by sending a POST request to the server,
where the syntax tree is sent as the request body, after
which the syntax tree for the entered sentence is stored
in the database.

Fig. 7. Node removal

Figure 7 displays the menu for deletion of a node. First, it
is necessary to select the node that is going to be altered. The
selected node is colored black to stand out from other nodes.
After node selection, the application opens the menu where
the user can add a new node to the selected one, change the
selected node’s name or delete the selected node. Figure 7
shows that option for deletion is chosen. If the user wants to
rename the node, it is necessary to select the rename option
from the displayed menu. After that, the user needs to enter a
new node name and confirm it. The third option in the menu
is to add a new node. When a node to which a new node is
added is selected, it is necessary to enter a name for the new
node to be added.

Figure 8 shows the canvas where the user can draw a
syntax tree from scratch.

V. CONCLUSION

The notation tool has been carefully created so that it has

the simplest interface with the intention of being used
primarily by domain experts - philologists. By using this tool,
users are able to tag sentences in the simplest possible way,
and thus quickly and efficiently create a corpus for the
Serbian language.

After launching this site on the web, it is necessary to hire
a set of domain experts who will tag sentences using the tool
and create a corpus of sentences. After collecting a sufficient
number of sentences, it is expected that these sentences will
be used to further improve the Serbian language parser.

ACKNOWLEDGMENT
This work has been supported by the Ministry of

Education, Science and Technological Development of the
Republic of Serbia.

REFERENCES

[1] T. Đorđević, S. Stojković: "Different Approaches in Serbian Language
Parsing using Context-free Grammars", Proceedings of 7th
International Conference on Electrical, Electronic and Computing
Engineering IcETRAN, Etno-Selo Stanišići, Bosnia and Herzegovina
(Online conference), pp. 588-591, September 28-30. 2020.

[2] N. W. Francis, H. Kucera, “Brown Corpus Manual” , Technical report,
Department of Linguistics, Brown University, Providence, Rhode
Island, US, 1979.

[3] M. Davies, The Corpus of Contemporary American English,
2008, www.english-corpora.org/coca/, 13.06.2021.

[4] English Corpora, https://www.english-corpora.org, 12.06.2021.
[5] The Quranic Arabic Corpus, https://corpus.quran.com, 10.06.2021.
[6] B. He, B. Dong, Y. Guan, J. Yang, Z. Yang, Q. Yang, J. Cheng, C. Qu,

“Building a comprehensive syntactic and semantic corpus of Chinese
clinical texts”, Journal of Biomedical Informatics, vol. 69, pp. 203-217,
2017.

[7] V. Batanović, N. Ljubešić, T. Samardžić, “SETimes.SR – A Reference
Training Corpus of Serbian”, Conference on Language Technologies
& Digital Humanities, Ljubljana, Slovenia, pp. 11-17, 2018.

[8] N. Ljubešić, F. Klubička, “{bs,hr,sr}WaC - Web Corpora of Bosnian,
Croatian and Serbian”, Proceedings of the 9th Web as Corpus
Workshop (WaC-9), Gothenburg, Sveden, pp. 29-35, April, 26. 2014.

[9] MULTEXT-East,
https://www.clarin.si/repository/xmlui/handle/11356/1041,
10.06.2021.

[10] ReLDI-NormTagNER-sr 2.1,
https://www.clarin.si/repository/xmlui/handle/11356/1240,
05.06.2021.

[11] Syntax tree generator, http://mshang.ca/syntree/, 26.07.2021.
[12] phpSyntaxTree, http://www.tycho.iel.unicamp.br/phpsyntaxtree/?,

26.07.2021.
[13] TreeForm, https://sourceforge.net/projects/treeform/, 26.07.2021.
[14] Trees, https://www.ling.upenn.edu/~kroch/gifdir/Trees3-

animation.GIF, 27.07.2021.
[15] Linguistic Tree Constructor,

https://ltc.sourceforge.io/screenshots.html, 27.07.2021.
[16] S. Bird, E. Klein, E. Loper, Natural Language Processing with Python,

Sebastopol, USA, O'Reilly Media, 2009

Fig. 8. Drawing syntax tree using canvas

RTI1.4 Page 5 of 5

