
 

Abstract—Narrow stopband filters with two notch 

frequencies and piecewise constant phase are investigated in 

this paper. The notch filters are determined by allpass subfilter 

phase approximation. Obtained filters with simple and double 

poles are compared in conditions when fractional part of the 

coefficients is represented with limited number of bits.  

 
Index Terms—Notch IIR filters, allpass filters, phase 

approximation, constant phase, quantization.  

 

I. INTRODUCTION 

THE ideal notch filters have exactly zero magnitude at 

frequency which need to be removed from input signal 

spectrum and unity gain otherwise. In many devices in 

practice the power line frequency signal and corresponding 

harmonics are often treated as noise [1]. Over time, digital 

electronic components become faster and cheaper allowing 

designers to oversample input signal. In that case the 

neighboring harmonics start to go closer to one another at 

the frequency axis. Notch filters are part of radar systems, 

control and instrumentation systems, medical applications 

and communications systems. In order to keep the distortion 

of desired signal as low as possible, the stopband of the notch 

filter should be as narrow as possible. In this paper problems 

associated with close notch frequencies will be observed. All 

of the presented results are given for double notch filters but 

it is easy to modify proposed method for arbitrary number of 

notch frequencies. 

II. REALIZATION STRUCTURE 

In addition to standard realization structures filters can be 

obtained by parallel connection of two allpass filters [2]. The 

magnitude of resulting filter depends on phases of applied 

allpass filters.  That is a reason why design of the 

linear/constant phase IIR filters comes down to the allpass 

phase approximation problem. 

In practice linear and constant phase are ultimate goals to 

avoid phase distortions [3]. To obtain the notch filter with 

approximately constant phase one allpass filter becomes 

direct path as shown in Fig. 1 [4].  The notch filter with linear 

phase will be achieved if one allpass filter is pure delay [5].  
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Fig. 1.  Double notch filter realised as parallel connection of direct path and 

fourth order allpass filter. 

 

The transfer function of constant phase notch filter is   

 

𝐻(𝑧) = 0.5(1 + 𝐻4(𝑧)) (1) 

 

where 𝐻4(𝑧) represents transfer function of allpass filter of 

the form 

 

𝐻4(𝑧) =∏
(𝜌𝑖 − 𝑒

−𝑗𝜃𝑧−1)(𝜌𝑖 − 𝑒
𝑗𝜃𝑧−1)

(1 − 𝜌𝑖𝑒
𝑗𝜃𝑧−1)(1 − 𝜌𝑖𝑒

−𝑗𝜃𝑧−1)

2

𝑖=1

 (2) 

 

taking into account the fact that allpass filters have 

conjugate-reciprocal pole-zero pairs. Magnitude of the notch 

filter directly depends on the allpass filters phase 𝜑 

 

|𝐻(𝑒𝑗𝜔)| = |𝑐𝑜𝑠
𝜑(𝝆, 𝜽, 𝜔)

2
| (3) 

 

where 𝝆 and 𝜽 represent moduli and phase angles of the 

allpass filters poles, respectively. Every pole and zero 

contribute to the phase with π/2 radians making fourth order 

filter to reach -4π radians phase at Nyquist frequency as 

shown in Fig. 2. 

The closer a pole is to the unit circle the higher negative 

slope is at frequencies in vicinity of pole position. The phase 

is monotonically decreasing function of frequency with 

emphasized jump around pole position. Fourth order transfer 

function also could be obtained with two simple poles. This 

case is marked with d) in Fig. 2. Now poles are not at the 

same frequency and two separate phase jumps of 

approximately -2π radians could be observed. 

According to (3), filter realized with described parallel 

structure possess passbands at frequencies ω where 

𝜑(𝝆, 𝜽, 𝜔)  approximates 2𝑘𝜋 with allowed tolerance ε, for 

𝑘 ∊ ℤ. Stopbands would be obtained at frequencies where 

phase value is approximately 2(𝑘 + 1)𝜋. 
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Fig. 2.  Phase of allpass filter of fourth order for double pole moduli a) 

ρ=0.94, b) ρ=0.85, c) ρ=0.77 for θ=0.5π and d) simple poles 𝜌1 =
0.968, 𝜌2 = 0.967 for 𝜃1 = 0.25𝜋 and 𝜃2 = 0.8𝜋. 

 

For predefined attenuation 𝑎 in decibels, at stopbands or 

passbands boundary frequencies, allowed phase 

approximation error has value 

 

𝜀 = 2arccos (10−𝑎/20) (4) 

 

III. DESIGN PROCEDURE 

If filter with two notch frequencies has double pole, to 

determine the transfer function only two unknown values 

need to be calculated- modulus and angle of the pole. The 

positions of notch frequencies are of highest importance, so 

one need to solve next system of equations  

 

𝜑(𝜌, 𝜃, 𝜔𝑛1) = −𝜋

𝜑(𝜌, 𝜃, 𝜔𝑛2) = −3𝜋.
 (5) 

 

Notch filter with two simple poles has four unknown 

parameters. It allows two boundary frequencies to be 

controled. System of equations that provide notch filter 

transfer function has now form  

 

𝜑(𝝆, 𝜽, 𝜔𝑛1) = −𝜋

𝜑(𝝆, 𝜽, 𝜔𝑛2) = −3𝜋

𝜑(𝝆, 𝜽, 𝜔𝑙1) = −𝜀

𝜑(𝝆, 𝜽, 𝜔𝑟3) = −4𝜋 + 𝜀

 (6) 

 

where 𝜔𝑙1 and 𝜔𝑟3 represents boundary frequencies of the 

first and the third passband, respectively.   

 

 

 

 

 

 

 

 

Instead of passband edges, it is possible to use stopband 

edges in system (6) but in (4) minimal attenuation in 

stopband need to be applied, with minimal modifications of 

last two equations in (6) (−𝜀 will be changed with −𝜋 ±  𝜀 

and −4𝜋 + 𝜀 with −3𝜋 ±  𝜀). 
Systems of equations (5) and (6) could be solved 

applying some iterative procedure which demands the initial 

solution. System (6) is given in alternative form 

 

𝑨𝜟 = 𝑩 (7) 

 

after approximating phase 𝜑(𝝆, 𝜽, 𝜔) by truncated Taylor 

series, where elements of matrix 𝑨 are 

 

𝑎𝑖𝑗 =

{
 
 

 
 
𝑑𝜑(𝜔𝑖)

𝑑𝜌𝑗
,    𝑗 = 1,2   𝑖 = 1, . . ,4

𝑑𝜑(𝜔𝑖)

𝑑𝜃𝑗−2
,    𝑗 = 3,4   𝑖 = 1, . . ,4

 (8) 

 

 

 

elements of column vector 𝑩 are 

 

𝑩 =

[
 
 
 

−𝜋 − 𝜑(𝝆∗, 𝜽∗, 𝜔𝑛1)

−3𝜋 − 𝜑(𝝆∗, 𝜽∗, 𝜔𝑛2)

−𝜀 − 𝜑(𝝆∗, 𝜽∗, 𝜔𝑙1)

−4𝜋 + 𝜀 − 𝜑(𝝆∗, 𝜽∗, 𝜔𝑟3)]
 
 
 

 (9) 

 

and vector of increments to be found is given with 

 

𝜟 = [𝛥𝜌1;  𝛥𝜌2;  𝛥𝜃1;  𝛥𝜃2] (10) 

 

In every iterative step system (7) is solved, the modulus 

and phase angle of poles are corrected until maximal 

absolute value of elements of column vector 𝜟 becomes less 

than predefined small value (in all given examples 10−10 is 

applied). As a good initial solution one could choose values  

 

𝜌∗ = 0.9    and   θ∗  =
𝜔𝑛1 +𝜔𝑛2

2
 (11) 

 

for double pole and  

 

𝝆∗ = [0.9; 0.9]   and    𝛉∗ = [𝜔𝑛1;  𝜔𝑛2] (12) 

 

for simple poles. Extensive experiments shown that the final 

solution would be reached in less than ten iterations for 

arbitrary feasible input parameters.  
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IV. RESULTS

 

Fig. 3.  The filters with two notch frequencies realized with double pole for 

a) 𝜔𝑛1 = 0.48𝜋, 𝜔𝑛2 = 0.52𝜋, b) 𝜔𝑛1 = 0.45𝜋,𝜔𝑛2 = 0.55𝜋 and c) 

𝜔𝑛1 = 0.42𝜋,𝜔𝑛2 = 0.58𝜋. 

 

In Fig. 3 are displayed characteristics of double notch 

filter attenuation for different zero magnitude frequencies. 

All filters have a double pole. Taking into account the phase 

characteristics shown in Fig. 2, to achieve more distance 

between the notches it is inevitable to move  the pole closer 

to the origin.  That is good for the stability because the pole 

moves further from the unit circle. Lower pole modulus 

values provoke lower phase slope, so the transition zones 

and stopbands become wider at the expense of passbands. 

This feature points to fact that double pole notch filter has 

restricted application. It is not possible to choose higher 

order allpass filter in attempt to improve notch filters 

characteristics, as in case of linear phase filters. 
 

 

Fig. 4.  The dependance of double pole modulus on notch frequencies gap 

for different 𝜔𝑛1 locations (𝛥𝜔𝑛 = 𝜔𝑛2 − 𝜔𝑛1 ). 

 

From Fig. 4 could be observed that most significant 

influence on double pole modulus has the  notch frequencies 

gap. The very value of notch frequencies location have no 

visible impact. In practical realization of digital filter, the 

number of bits for filters coefficients representation need to 

be defined. 

 

Fig. 5. Possible positions of filters poles for fixed point arithmetics when 4 

bits are reserved for fractional part of transfer function coefficients. 

 

Finite number of bits leads to rounded values of 

coefficients so realized filter characteristics just approximate 

derived ones. Possible positions of poles of the second order 

transfer function are displayed in Fig. 5 in case four bits are 

dedicated to fractional parts. In other words, calculated 

transfer function will be replaced with approximated one and 

obtained poles have to move from obtained positions to 

available locations like in Fig. 5. 

The Fig. 5 indicates the fact that one can expect bigger 

error as consequence of quantization if notches are 

positioned at low and high frequencies. 

  

 

Fig. 6.  Phase of notch filters (𝜔𝑛1 = 0.49𝜋, 𝜔𝑛2 = 0.51𝜋) with a),c) 

double and b), d) simple poles before and after quantization fractional parts 

with 4 bits, respectively. 

 

As first example filters with 𝜔𝑛1 = 0.49𝜋 and 𝜔𝑛2 =
0.51𝜋 are designed with desribed procedure. Attenuation of 

1 dB is chossen in passbands. Boundary frequencies are 

𝜔𝑙1=0.47 𝜋 and 𝜔𝑟3=0.53 𝜋. Corresponding phase, 

attenuation and poles location are presented in Fig. 6, Fig. 7 

and Fig. 8, respectively. 
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Fig. 7.  Attenuation of notch filters (𝜔𝑛1 = 0.49𝜋, 𝜔𝑛2 = 0.51𝜋) with a), 

c) double and b), d) simple poles before and after quantization fractional 
parts with 4 bits, respectively. 

 

As it was expected, the phase undergo changes as 

repercussion of quantization, causing notch frequencies to 

displace. The notches are misplaced for 0.0142 for simple 

poles and 9 ∙ 10−4 for double pole case. Symmetry helps 

double pole filter less to degrade. The reason can be found 

in Fig. 5, where one can observe that pole with θ=0.5π will 

change only pole modulus as given in Fig. 8. Simple poles 

changed both moduli and phase angles causing significant 

mismatch between desired and obtained notches. 

All obtained filters are realized as serially-cascaded 

second-order sections. Denominator coefficients of second 

order sections of the allpass filter with simple poles are given 

in Table I. All presented results are obtained in Matlab. The 

coefficients of allpass filter with double pole are presented 

in Table II. 

 

Fig. 8. Location of notch filters poles (𝜔𝑛1 = 0.49𝜋, 𝜔𝑛2 = 0.51𝜋) with a), 

c) simple and b), d) double poles before and after quantization fractional 
parts with 4 bits, respectively. 

 

 
 

 

 
 

TABLE I 
COEFFICIENTS OF THE SECOND ORDER SECTIONS (SIMPLE POLES) 

 

1. 0.0451     0.9581 

1. -0.0451    0.9581 

 
TABLE II 

COEFFICIENTS OF THE SECOND ORDER SECTIONS (DOUBLE POLE) 
 

1. 0.     0.9391 

1. 0.     0.9391 

 

After quantization, with four bits dedicated to the 

fractional part, new values for second order sections 

coefficients are obtained as given in Table III. Table IV 

contains coefficients of allpass filter with a double pole. 

Because of existing symmetry second order sections have 

one coefficient equal to zero demanding less multipliers and 

adders in hardware realization.  

 
TABLE III 

COEFFICIENTS OF THE SECOND ORDER SECTIONS AFTER QUANTIZATION 

(SIMPLE POLES)  
 

1. 0.0625     0.9375 

1. -0.0625  0.9375 

  
TABLE IV 

COEFFICIENTS OF THE SECOND ORDER SECTIONS AFTER QUANTIZATION 

(DOUBLE POLE) 
 

1. 0.     0.9375 

1. 0.     0.9375 

 

For second example filters with 𝜔𝑛1 = 0.10𝜋 and 𝜔𝑛2 =
0.11𝜋 are chosen. For design procedure values  𝜔𝑙1=0.09 𝜋, 

𝜔𝑟3=0.12 𝜋 and 𝑎 =3 dB are adopted. Obtained phase, 

attenuation and poles location are presented in Fig. 9, Fig. 

10 and Fig. 11, respectively. These filters have poles in area 

where possible pole locations are scattered. As consequence, 

quantization of filter coefficients will seriously degrade 

characteristics. Close notches demand poles to be near the 

unit circle to provide enough steep slope. 

Even 5 bits dedicated to the fractional part was not enough 

to stop a pole at the end of the unit circle. From (2) it is 

obvious that in such a case influence of the allpass zero and 

pole is identical, forcing the transfer function to degrade to 

second order. As a result, filter possess only one notch, as 

given in Fig. 10 d). The double pole filter has two notches 

after quantization but rear possible pole positions 

considerably influence the notches to displace. 
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Fig. 9. Phase of notch filters (𝜔𝑛1 = 0.10𝜋, 𝜔𝑛2 = 0.11𝜋) with a),c) double 

and b), d)  simple poles before and after quantization fractional parts with 5 

bits,respectively. 

 

 

Fig. 10. Attenuation of notch filters (𝜔𝑛1 = 0.10𝜋, 𝜔𝑛2 = 0.11𝜋) with a), 

c) double and b), d) simple poles before and after quantization of 

fractional parts with  5 bits, respectively. 

 

 

Fig. 11. Location of notch filters poles (𝜔𝑛1 = 0.10𝜋, 𝜔𝑛2 = 0.11𝜋) with 

a), c) simple and b), d) double poles before and after quantization fractional 
parts with 5 bits, respectively. 

V. CONCLUSION 

   Double notch filters with constant phase in passbands 

are investigated in this paper. Two similar solutions are 

compared and impact of quantization is analyzed. Parallel 

allpass structure guarantee low passband sensitivity. 

Quantization effects primarily affect notch filters stopband, 

moving away locations of notches from desired positions. 

The double pole filters are not good choice in case when gap 

between notches is wider than 0.2π because low phase slope 

causes transition zones to spread, degrading selectivity. On 

the other hand, the pole has lower modulus if filter possess 

double pole, what is guarantee to remain stable after 

quantization and still to have both notches. The distance of 

simple pole from the unit circle is always smaller compared 

to double pole. As consequence, after quantization if notches 

are close to each other it may occur one or both simple poles 

to finish at the unit circle and quantized version of filter lose 

selectivity. Design of numerous notch filters with different 

notches location have been shown that double pole solution 

is better option for close notches and small number of bits 

dedicated to the coefficients fractional part.    
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