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Second Integration within Potential Integrals in
Case of Singular Basis Functions Using
Singularity Cancellation

Aleksandra J. Krneta and Branko M. Kolundzija, Fellow, [EEE

Abstract—Efficient and accurate evaluation of potential
integrals represents one of the main problems when using
singular basis functions in the MoM/EFIE analysis of structures
with the edge effect. In this work singularity cancellation
technique is considered for precise evaluation of the second
integration of potential integrals with singular basis functions in
case of axially symmetric structures. The efficiency of this
technique is analyzed on several examples for various angles
between edges and for different positions of the field point.

Index Terms—Integral equation, Method of moments (MoM),
potential integrals, singular basis functions, singularity
cancellation.

I. INTRODUCTION

THE moment method (MoM) is a well-established method
which has been growing and improving for more than fifty
years [1]. One of the current trends is the development of
singular basis functions and their implementation in the
method.

Namely, when using MoM/EFIE method for the EM
analysis, at the edges of a structure surface charge may be
singular as well as the parallel component of the surface
current [1]-[6]. Polynomial basis functions, that are
commonly used, can poorly take into account the edge effect.
Therefore, singular basis functions are developed which can
precisely follow the singular behavior of surface currents and
charges. Various singular basis functions have been developed
for 2D and 3D problems [2]-[4]. If properly chosen they can
increase the accuracy of output results for several orders of
magnitude [5].

However, singular integrals within the MoM system matrix,
that arise in the case of singular basis functions, are very
difficult to evaluate numerically [6]. Namely, the integrands
have a singularity because of the singular basis functions and
they can have another quasi-singularity due to the closeness of
the field point. Accordingly, numerical integration of these
integrals represents one of the main problems when
implementing singular basis functions.

Singularity cancellation technique has been successfully
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used for the integration of potential and impedance integrals
in case of polynomial basis functions [7]-[9]. The focus of this
work is efficient evaluation of the second integration of
potential integrals with singular basis functions in case of
axially symmetric structures using singularity cancellation.

Description of the considered problem and the choice of
singular basis functions is discussed in section II. Potential
integrals that are analyzed are also shown in section II. In
section III several variable transformations are proposed for
singularity cancellation for the evaluation of the second
integration of potential integrals. Numerical results are shown
in section IV where the efficiency of proposed variable
changes are mutually compared. Conclusions are drawn in
section V.

II. POTENTIAL INTEGRALS IN CASE OF SINGULAR BASIS
FUNCTIONS

Consider an axially symmetric structure modeled with
building elements in the form of right-truncated cone surfaces
(as shown in Fig. 1a), whose axis coincides with the z-axis.
Every right-truncated cone can be defined using z-coordinates,
z; and z,, and radii, @, and a,, at its endings. It can also be
defined using z-coordinate, z., and radius, a., at the center of
the cone, and half-differences of the z-coordinate, Az, and
radii, Aa, between its endings (see Fig. la). The relations
between these parameters are

z,=(2,+2,)/2, a,=(a;+a,)/2, (1a,b)

(1c,d)

Az=(zy—2))/2, Aa=(a,—a))/2.

Fig. 1. (a) Example of an axially symmetric structure and (b) local ps-
coordinate system.

Potential integrals that are considered, are given with
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P={[f(s)g(Rydsdp, (2a)
-1-1
11
P =19 o(Rydsap, (2b)
-1-1 ds
11
0= [ [ fi(s)g(R)cos(mp)dsdp , (20)
1-1

where s is the local coordinate that goes along the generatrix
of the element and takes values —1 and 1, at its ends (see
Fig. 1b), p=¢/r is also a local coordinate that goes along the
circumference of the considered element (¢ is the azimuthal
angle in cylindrical coordinate system), fi(s) are basis
functions that are used for the analysis, g(R)=e¢"*/(4nR) is
the Green's function, B = o(nogo) "~ is the phase coefficient,
and R=|r;—r,| is the distance between the field point r; and
the source point r; (which is on the considered generatrix of
the element).

The basis functions are specifically chosen to take into
account the edge effect. Namely, in the general case of an
axially symmetric problem, surface current does not have a
tangential component to any edge of the structure, and surface
charge at the sharp edge has infinite value. For this reason
singular functions, given with

a9 a-s), sp=-1
fi(S)_{(l+s)(l—s)b, s =1

1

, (3a)

are chosen as basis functions [1], [5]. In (3a) s;; represents the
end where the edge effect is considered, and parameter b
depends on the angle 0 between the generatrices of
neighboring elements (as shown in Fig. 2a) and is given with
b=m/(2n—0) [1], [5]. In case of an open end of the structure 0
has value 0 = 0, therefore 5=0.5 (see Fig. 2b).
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Fig.2. (a) Angle 0 between the generatrices of neighboring elements.
(b) 6=0 in case of an open end of the structure (therefore 5=0.5).

First derivative of the singular basis functions is given with

. b-1 _
dfi(s):{(l+s) (b=1=s+D), sy =-1 o

ds (=9 (=b+1-s(b+1)), s, =1
and it has infinite value at the point s =s,.

Since basis functions (3) are not polynomial functions and
because they are singular at point s;; numerical integration of
(2) is very difficult using standard Gauss-Legendre integration
formula. Therefore, singularity cancellation technique is
applied as follows.

III. SINGULARITY CANCELLATION FOR EVALUATION OF
POTENTIAL INTEGRALS

The first integration of the potential integrals (2) goes along
the s-axis and is given with

1
I =[ fi(s)g(R)ds ,
-1

N AG)
I jl o (R,
Integrands from (4) are singular due to singular basis
functions and they may have a quasi-singularity due to the
closeness of the field point. In this work integrals from (4) are
accurately evaluated using variable transformations from [6]
for singularity cancellation technique.
The second integration of potential integrals (2) is given
with

(4a)

(4b)

1
P=[1(p.x,)dp, (5a)
-1
1
P'=[I(px)dp, (5b)
-1
1
0= [1,(p,x;)cos(mp)dp . (5¢)

1

Without diminishing generality of the problem, let us
suppose that the field point is in the xOz-plane. In that case
integrands from (5) have singular behavior in the vicinity of
p=0. The singular behavior becomes more pronounced as the
filed point approaches the surface of the element.

In order to efficiently evaluate potential integrals (5)
singularity cancellation technique is considered. Several
variable transforms are analyzed.

First variable transform that is considered is

dt = P , t=arcsin(p—1) (6a,b)
VP(2-p)
p=sin(t)+1, dp=cos()ds, (6¢,d)

where p €(0,2) . After applying (6), the integrals from (5) are

evaluated using Gauss-Legendre (GL) integration formula.
The transformation (6) as well the integrands from (5) are
symmetrical with respect to p=1. Therefore in order to
increase the efficiency of numerical integration, GL formula
of order 2n is applied, and only first n samples are evaluated
[10].

The second variable transform that is inspected is [9]

dp PP
= n-——-—

dt =——, - (7a,b)
;pz +a12 a
p=ad'sinh(t), dp=a'cosh(t)dt, (7¢,d)

where a' represents normalized distance between the field
point r; and the considered element [9]. Having in mind (7b) it
can be seen that the variable change (7) cannot be used if
a'=0. Therefore, variable change (7) can only be used if the
field point is not directly on the surface of the element. The
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transformation (7) as well the integrands from (5) are
symmetrical with respect to p=0. Accordingly, the efficiency
of integration can be increased by applying GL formula of
order 2n, and by evaluating only first n samples [10].

The last variable change that is considered is the Double-
Exponential formula (DE) from [11]. Due to symmetry, only
first n+1 samples can be used (out of 2n+1).

IV. NUMERICAL RESULTS

The efficiency of proposed variable transformations for
singularity cancellation is analyzed for several values of
parameter b, for different positions of the field point and for
various shapes of the element. The frequency is =300 MHz
(A=1m). In every Fig. results are shown for proposed
variable transformations and for direct integration (i.e. when
directly applying GL integration formula) for comparison.

As the first example let us consider a cylindrical element of
height 2=2A and radius a;=a, =X\ (i.e. Az=L\, Aa=0, z.=A
and a.=A) with parameter 5=0.7. The field point is directly
on the surface of the element with coordinates z;=A, a;=A\.
Fig. 3 shows the efficiency of evaluation of the potential
integral (5a) versus the number of integration points.

—GL
—p=sin(?)+1
— DE

T T - T
200 250 300
N,
Fig. 3. Relative error §, of integration of (5a) versus the number of integration
points N, for several integration techniques in the case of »=0.7. Cylinder
dimensions: Az=X, Aa=0, z.=a.=A, field point coordinates: z,=A, a;=A\.

T T
100 150 400

As the next example the same cylindrical element is
considered but with parameter b=7/9. Fig. 4 shows relative
error of the integration of integral (5c) for the case when the
field point is close to the surface of the element, with
coordinates z;=\, ¢;=A+107*A. Fig. 5 shows the efficiency of
integration of (5b) when the field point is directly on the
surface of the element, with coordinates z;=2, ¢;=A\.

Results in Figs. 6 and 7 are for the case of a conical element
with height 7 =2\ and the radius of the base a =2\ (i.e. Az=A,
Aa=M, z.=\ and a.=\). Parameter b has value b=7/8. In the
case of Fig. 6 the filed point is very close to the surface of the
cone with coordinates z=1.5%, @=1.5A+10"°}, and the
efficiency of evaluation of (5a) is shown. Fig. 7 shows results
for the efficiency of evaluation of (5b) for the case when the
field point is directly on the surface of the cone, with
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coordinates z;=1.5A, a;=1.5\.
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Fig. 4. Relative error §, of evaluation of (5c) versus the number of integration
points N, for several integration techniques in the case of »=7/9. Cylinder
dimensions: Az=z.=a.=\, Aa=0, field point coordinates: z;=A, a;=A+1 0.
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Fig. 5. Relative error &, of evaluation of (5b) versus the number of integration
points N, for several integration techniques in the case of »=7/9. Cylinder
dimensions: Az=z.=a.=\, Aa=0, field point coordinates: z;=1, a;=A.
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Fig. 6. Relative error , of evaluation of (5a) versus the number of integration
points N, for several integration techniques in the case of b=7/8. Cone
dimensions: Az=z.=a.=Aa=X, field point coordinates: z=1.5A,
a=1.50+107L.
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As the next example right truncated cone is considered with
height 4 =2A, radius of the first basis a; =2\ and of the second
basis a,=A (i.e. Az=A, Aa=-0.5A, z.=L and a.=1.5A).
Parameter b has value b=2/3. Fig. 8 shows the relative error
of integration of (5b) in the case when the field point is close
to the surface of the element with coordinates z,=1072,
a;=20+0.51107. Fig. 9 shows the relative error of evaluation
of (5¢) in the case when the field point is directly on the

surface of the element with coordinates z,=1072,
a,=2)-0.51107.
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Fig. 7. Relative error 3, of evaluation of (5b) versus the number of integration
points N, for several integration techniques in the case of »=7/8. Cone
dimensions: Az=z,=a.=Aa=A, field point coordinates: z;= 1.5, a;=1.5)\.

From Figs.3-9 it can be seen that all variable
transformations are much more efficient than direct
integration (GL). For example, in the case of a conical
element (with dimensions 2 =a=2)) and the field point which
is near the surface of the cone (Fig. 6) variable transformation
(7) provides maximal precision (relative error is 8,~10")
with only 60 points. In contrast to that, direct integration
requires 350 in order to provide the relative error of ,~ 10>
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Fig. 8. Relative error 8, of evaluation of (5b) versus the number of integration
points N, for several integration techniques in the case of »=2/3. Right-
truncated cone dimensions: Az=z.=A, a.=1.5h, Aa=-0.5), field point
coordinates: z;= 10"\, ;=2A+0.51107".

From Figs. 3-9 it can also be seen that if the field point is
near the surface of the element, variable change (7) is the
most efficient transformation. However, it cannot be used if
the field point is directly on the surface of the element. DE
formula can be used in all cases. In the case when the field
point is directly on the surface of the element DE formula
provides maximal precision with the least number of
integration points.
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Fig. 9. Relative error , of evaluation of (5¢) versus the number of integration
points N, for several integration techniques in the case of b=2/3. Right-
truncated cone dimensions: Az=z.=A, a.=1.5A, Aa=-0.5), field point
coordinates: z;= 10\, a;=21-0.51107".

V. CONCLUSION

In this work efficient and accurate evaluation of the second
integration of potential integrals with singular basis functions
is considered for MoM/EFIE analysis of axially symmetric
structures. Singular basis functions are used in order to take
into account the edge effect. The second integration of
potential integrals has singular behavior in the vicinity of the
projection of the field point to the considered element.
Therefore, evaluation of potential integrals using standard
Gauss-Legendre integration formula is inefficient.

For this reason several variable transformations are
considered for accurate numerical integration of these
integrals using singularity cancellation technique. The
efficiency of these transformations is analyzed on several
examples for different values of the angle at the edge, and for
various shapes and dimensions of the element, as well as for
different positions of the field point. From the results it can be
concluded that all variable transformations are much more
efficient than direct integration (GL). Variable change (7)
provides maximal precision with the least number of
integration points in the case when the field point is close to
the surface of the element, and DE formula is the most
efficient in the case when the field point is directly on the
surface of the element.

The integration of potential integrals as a result of Galerkin
test procedure using singular basis function (as test functions)
is singular as well. Therefore, singularity cancellation
technique could possibly improve the efficiency of evaluation
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of these integrals (i.e. the impedance integrals) as well, which
will be the subject of future work.
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Performance of Max-Ortho Basis Functions in
FEM Scattering Analysis

Slobodan V. Savi¢, Member, IEEE, Milan M. 1li¢, Senior Member, IEEE,
and Branko M. Kolundzija, Fellow, IEEE

Abstract—Performance of previously developed maximally
orthogonalized higher order basis functions implemented in the
large-domain finite element method are additionally evaluated in
two numerical examples. In our previous work these basis
functions were used only for non-radiating problems. In order to
expand their scope, and make them suitable for radiating
problems also, in this work these basis functions are combined
with the first order absorbing boundary condition. It is shown
that this does not degrade their superiority regarding the
condition number.

Index Terms—Condition number; finite element method;
higher-order basis functions; higher-order modeling; numerical
analysis; orthogonal functions.

I. INTRODUCTION

TWO most popular numerical techniques for solving
general linear electromagnetic (EM) problems in the
frequency domain are the finite element method (FEM) [1, 2]
and the method of moments (MoM) [3, 4]. After expanding
EM quantities in terms of basis functions and unknown
coefficients, the final system of linear equations must be
solved, which can represent a significant percentage of the
total simulation execution time. There are several algorithms
for solving systems of linear equations (iterative methods
being some of them). In any case, larger systems of equations
require more computational recourses and more time to be
solved.

It is generally accepted that div- and curl-conforming
higher-order basis functions are more efficient then low-order
functions [5, 6], i.e., that they yield a smaller system of linear
equations for the same accuracy, compared to low-order basis
functions. Unfortunately, in their original form, hierarchical
higher-order basis functions possess significant linear
dependence, which leads to ill-conditioned system-matrices.
This, in turn, limits the maximal order of basis functions in
the mesh [7], and disables the efficient usage of iterative
solvers [8, 9].

Great amount of work has been done within the community
in attempts to construct more orthogonal and linearly
independent basis functions [10-14]. In [15] a general theory
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of maximally orthogonal div- and curl-conforming
higher-order basis functions is presented for generalized
wires, quadrilaterals and hexahedra. Explicit expressions for
these basis functions are presented up to the eight order and
numerical results are presented for the MoM-SIE. In [16]
maximally orthogonal basis functions where implemented in
the higher-order large-domain FEM, and the novel two-term
recurrent formulas for their calculation were developed.

As a continuation of our work in [9], [15] and [16], here we
evaluate the accuracy and orthogonality of the maximally
orthogonal basis functions in the higher-order large-domain
FEM in two numerical experiments. As an addition to the
numerical experiments from [16], these examples cover
problems frequently encountered in engineering practice.

The rest of this paper is organized as follows. To keep the
paper self-contained, the relevant theory of the higher order
large-domain FEs is given in Section II. Three types of basis
functions (classical, near-ortho and max-ortho), used in the
higher-order FEM, are presented in Section III. Results of
numerical experiments are presented in Section IV, and the
concluding remarks are given in Section V.

II. HIGHER ORDER LARGE-DOMAIN FINITE-ELEMENT
TECHNIQUE

As a basic element for the geometrical modeling of
arbitrary shaped 3-D electromagnetic (EM) structures in the
FEM, we use a generalized curved parametric hexahedron [6]

whose geometry is defined as
KU K\" KW

)= 33 Ll Ly ML, (g

m=0n=0 /=0
—1<u,v,w<l,

where r,,,; are the position vectors of the interpolation nodes,

K,, K,,and K, are the geometrical orders of the element
along u-, v- and w-parametric coordinates, and Lﬁ“ , LI,,(“ , and

Lf are the Lagrange interpolating polynomials [6].

Equation (1) defines a mapping from a cubical parent domain
(-1<u,v,w<1) to the generalized hexahedron, as illustrated
in Fig. 1. All parameters of a FE, such as its basis functions,
are defined in the parent domain and mapped through (1) to
the global domain, i.e., to the xyz-coordinate system in Fig. 1.

In the FEM formulation, we start from the curl-curl electric
field vector-wave equation [6]

Vxu'VxE-kie,E=0, (2)
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where €, and p, are complex relative permittivity and
permeability of the medium, E is the electric-field complex

intensity vector, k, =m,/eqn, is the free-space wave

number, g, and p, are permittivity and permeability of free

space, and ® is the angular frequency of the implied time-
harmonic excitation. Inside each element we approximate the

electric-field intensity vector as
Nyl Ny N, Ny Ny=IN,, N, N, Nyl

N
E= 3 S S b+ S Y it 3 S o, )

i=0 j=0k=0 i=0 j=0k=0 i=0 j=0 k=0

f

where f, Vijk >

il o and f, ., are the curl-conforming vector

basis functions, N

u>?

N,,and N, are adopted orders of the

electric field expansion, and Clyijk > Oy » and O, are

unknown field-distribution coefficients to be determined by
the FEM [6].

Fig. 1. Cube to hexahedron mapping defined by (1).

A standard Galerkin-type weak-form discretization of (2)
yields [9]

IM;I(VXff}'/? ) (VxE) dV_kgjgffiilé EdV =

4 ) v )
:—§pr ff]‘l; nx(VxE)dsS,
s

where V' is the volume of the element, fl% stands for any of

the testing functions, S is the surface of the element, and n
is the outward unit normal to the surface of the element. (In
the Galerkin method, testing functions are the same as the
basis functions.) Electric field expansion from (3) is
substituted in (4), leading to the final system of linear

equations with unknown coefficients o, , o,; and o

wijk *
In the final discretized form of (4) the first integral on the
left-hand side produces the entries of the FEM stiffness
matrix, whereas the second integral produces the entries of the
FEM mass matrix [1].

In the higher-order finite-element technique we use, basis
functions are constructed from polynomials [6]. For the same

field-expansion orders [ N,, N,, and N, in (3)], namely for

u>?

the same degree of polynomial approximation of the EM field
distribution, these polynomials can be arranged in different
ways and different polynomials can be assigned to different
basis functions [16]. Regardless of the way in which the
polynomials are arranged, they span the same space and they
equivalently approximate the EM field. On the other hand,
they result in different stiffness and mass matrices and they
produce different systems of linear equations. Because of this,
by starting from one arrangement of polynomials in original
basis functions, we can rearrange them in order to get the
system of linear equations best suited for solving by standard
numerical procedures. The condition number of the matrix is
one of the parameters describing the corresponding system of
equations in this sense, and, generally, matrices with smaller
condition number are preferable, i.e., yield numerically more
stable solutions.

III. BASIS FUNCTIONS AND THEIR ORTHOGONALITY IN THE
HIGHER ORDER FEM

The curl-conforming basis functions can be represented as
(6]
£ = B@)S;(0)Si(w)a",
£ =S (“)I)J'(V)Sk(w)ava (5)
£ = S;)S; (M E (w)a",
where a“, a” and a" are reciprocal unitary vectors defined
as
a” =a,xa,/J, (6)

J 1s the Jacobian of the covariant transformation

u _ v _
a“=a,xa, /J, a"=a,xa,/J,

J=(a,xa,)a,, ()
and a,, a, and a are unitary vectors defined as
a,=dr/du, a,=dr/dv and a,, =dr/dw, (3)

with r given in (1).
Two basis functions f; and f; are said to be orthogonal if

their inner product is equal to zero [15, 16], i.e., if
<fi,fj>:jfi~fj dr=0,i#;, )
v

where V' is the volume of the particular FE. Based on (9),
basis functions belonging to different elements are inherently
mutually orthogonal.

The orthogonality condition (9) takes into account the
polynomial form of the basis functions, but also the geometry
of the particular element [through the unitary and reciprocal
unitary vectors, as well as the Jacobian appearing in (5) and
(6)]. The orthogonality condition defined this way is very
restrictive, so it is very challenging to develop basis functions
orthogonal in this sense for a general (curved) FE. Because of
this, we will consider less general and less restrictive
orthogonality condition in which it is assumed that a FE has
mutually orthogonal coordinate lines with constant unitary
and reciprocal unitary vectors. In this particular case, the basis
functions orthogonality defined in (9) can be reduced to the
orthogonality of P- and S-functions from (5) [15, 16]. We will
thus consider the two basis functions to be mutually
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orthogonal if their P- and S-functions satisfy

(10)

it

1
(P.P)= .[g(u)g.(u)dwo, i#j,and

u=-1

1
(s,.8;)= ISl-(u)Sj(u)duzo, i
u=—1
Based on this we can define the orthogonality factors for P-
and S-functions as [15, 16]
(s0:5,)

F:M T e o\

Next, we consider three types of basis functions and their
orthogonality: classical basis functions (CLBFs), near-ortho
basis functions (NOBFs), and max-ortho basis functions
(MOBFs), and we examine their performance and behavior in
the context of the higher order large-domain FEM.

For CLBFs, P- and S-functions [in (5)] are defined as [5, 6,
15, 16]

B(u)=u,
1-(=1)’v, j=0,1
S,m=H7-1,  j=2,4.6,."
vi—v,  j=3,57,..

(11)

and 05. = (12)

o

—1<u,v<1.

(13)

S-functions (S;, j=0) can be divided into two groups: S,
and S, will be called node S-functions, and § > J22, will

be called segment S-functions, as in [15, 16]. Only basis
functions with appropriate node S-functions establish the
continuity of the tangential component of the electric field at a
face shared by adjacent elements, making them
curl-conforming.

For near-ortho basis functions, P- and S-functions are
defined as [9, 11, 15]

F(u) = L;(w),

S.(v) = L) = (=1 L(v), j=0]1, -1<u,v<1, (14)
I -1, j22

where L; are Legendre polynomials of order i .

Max-ortho segment S-functions, S ;o J=22, can be
constructed in the form [15, 16]
S,m=L;,(v)-L,,M+D;S;,(v), j=2, (15)

and recurrent formula for the unknown coefficients D . is

derived in [16]

Dj - 2j —.7
4j-10-(2-3)D,_,

S-functions, S, and S,

constructed in the form [15, 16]

DZZO, D3:0,

, j=4.(16)

Max-ortho node can be

N
sy (v)=Lo(v)—(—l)fL,(v)+ZD_ijk(v), j=01, (17

k=2
where N is an appropriate field-expansion order and S§,,

2 <k < N are max-ortho segment S-functions from (15). The

recurrent formula for the unknown coefficients Df and Df,
2< k<N, is determined in [16]

0_ 1 4l P 2k+1 i Jj=0]1
e i e e e
Notice that the max-ortho node S-functions are not

mutually orthogonal, and that they are not hierarchical. The
fact that these functions are not hierarchical has different
practical implications in the FEM and the MoM-SIE, and this
will be the subject of our future research. Additionally, in [17]
it is shown that high-order Legendre polynomials and their
derivatives cannot be calculated precisely simply by linearly
combining power functions, and that they should be
calculated recurrently. Thus, the max-ortho basis functions
should also be calculated recurrently (as they contain
Legendre polynomials in our implementation). Based on this,
the recurrent formulas (16) and (18) are perfectly suited for
efficient and precise calculation of the max-ortho basis
functions.

k+2°

ON\IOM/B'«JN»—‘O omuom/bwr\)»—o

01 234,56 789

01 234,56 789 01 23 4,56 789

Fig. 2. Matrix form of orthogonality factors \of; | (top row) and \05 | (bottom

row) for (a) classical, (b) near-ortho and (c) max-ortho basis functions.

Absolute values of orthogonality factors 05

plotted in Fig. 2 in the form of a matrix for CLBFs, NOBFs
and MOBFs up to the ninth order (0 <i,j <9), similarly as in
[15, 16]. For CLBFs, the matrices of the orthogonality factors

05 and 05 [Fig. 2 (a)] have many non-zero elements, thus the

and 05 are

majority of basis functions are not mutually orthogonal. For
NOBFs, P-functions are completely mutually orthogonal and

the matrix of the orthogonality factors o’ is an identity matrix

ij
[Fig. 2(b)]. S-functions are not completely mutually
orthogonal, but, when compared with CLBFs, the matrix of

the orthogonality factors 05

seen from Fig. 2(c), max-ortho P-functions are completely
mutually orthogonal, segment S-functions are completely
mutually orthogonal (Region 1), node S-functions are
completely orthogonal to the segment S-functions, (Region 2),
node S-functions are not mutually orthogonal (Region 3), and

is sparser. Finally, as it can be

the matrix of the orthogonality factors 05

the MOBFs. Based on these results, it seems reasonable to

is the sparsest for
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assume that the MOBFs will lead to the smallest condition
number of the FEM mass matrix, especially when the mesh
consists of electrically large elements with high
field-expansion orders.

IV. NUMERICAL EXAMPLES

In this section we examine the performance of MOBFs
implemented in higher order large-domain FEM technique
[6]. We also compare their performance with CLBFs and
NOBFs, similarly as in [16]. In all numerical examples, the
entries of the mass and stiffness matrices are diagonally
normalized [15] by the entries on the main diagonal of the
mass matrix and all real and complex numbers are represented
in double-precision floating-point format.

As the first example, consider a spherical perfect electric
conductor (PEC) scatterer of radius a =1 m, situated in free

space. The scatterer is modeled with six second-order (K =2)
truncated square pyramid like elements, as shown in the inset
of Fig. 3. These elements have inner radius ¢ =1 m and outer

radius h=1.5m with the PEC boundary condition and

first-order absorbing boundary condition (ABC) [18] applied
to their faces that sit on the scatterer and outer surface,
respectively. The scatterer is illuminated by a uniform plane
wave. A bistatic radar cross-section (RCS) is calculated at
frequency f =300 MHz (A, =1m being the corresponding

wavelength in a free space). For all elements in the mesh, the
field-expansion orders in all directions are set to be equal
(Nll =NV =NW =N)'

When solving an EM eigenvalue problem (e.g., as in first
two examples from [16]), FEM mass and stiffness matrices
are kept separately, and a separate condition number can be
calculated for each of them. In contrast with this, when
solving radiation or scattering problems, FEM mass and
stiffness matrices are combined, resulting in a final FEM
matrix. As can be seen from Section II, computation of entries
in the stiffness matrix includes the curl operator. The curl
operator affects the basis functions, and mutually orthogonal
basis functions generally are not mutually orthogonal after the
curl operator has been applied. This will definitely degrade
the orthogonality of the final FEM matrix compared to the
orthogonality of the mass matrix. Nevertheless, it is
reasonable to expect that max-ortho basis functions will lead
to reduction of the condition number of the final FEM matrix
compared to all the other types of basis functions.

Fig. 3 shows the condition number of the normalized final
FEM matrix for the spherical scatterer. The results for all
three types of basis functions are compared. We can see from
Fig. 3 that the MOBFs indeed produce the lowest condition
number. When the CLBFs are used, the condition number
increases rapidly, and it is expected that after reaching a peak,
it will remain practically constant, similarly as in [16].

Fig. 4 shows the normalized L* error norm of the
computed bistatic RCS [19] for the PEC spherical scatterer. In
this example, all three types of basis functions yield similar
accuracy in computation of the RCS. One of the main

advantages of the max-ortho basis functions in this example
would be the smallest condition number, which is a feature
highly sought by the iterative solvers [16].

N
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Fig.3. Condition number of the final FEM matrix for the PEC spherical
scatterer; comparison of MOBFs, NOBFs, and CLBFs.
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Fig. 4. Normalized L error norm for the computed bistatic RCS of the PEC
spherical scatterer; comparison of MOBFs, NOBFs, and CLBFs.

As the second example, consider a waveguide band-pass
filter, frequently encountered in engineering practice. The
filter consists of an air-filled rectangular PEC waveguide with
two PEC stubs in the form of rectangular cuboids. The
waveguide is ¢ =50 mm long with dimensions a =20 mm

and b =10 mmin the cross-section, as shown in the inset of
Fig. 5. The two stubs have a square cross-section, a, =2 mm

on a side, and they are set symmetrically in the waveguide.
Their axes are separated by ¢, =17.5 mm .

The filter is meshed with eight trilinear (K =1) elements.
For all elements in the mesh, the field-expansion orders in all
directions are equal and setto N (N, =N,=N,=N).

Fig. 5 shows the condition number of the final FEM matrix
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for all three types of basis functions. We can conclude based
on this figure that with p-refinement [6], the CLBFs lead to a
drastic increase of the condition number. On the other hand,
the MOBFs have the lowest condition number, whereas the
difference in the condition number between the MOBFs and
NOBEFs is not very large.
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Fig. 5. Condition number of the final FEM matrix for the waveguide band-
pass filter; comparison of MOBFs, NOBFs, and CLBFs.
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Fig. 6. Scattering parameters of the waveguide band-pass filter; comparison
of results obtained by HFSS and by the higher order FEM using MOBFs,
NOBFs, and CLBFs.

In order to evaluate the accuracy of the higher-order FEM
analysis of the filter and validate the obtained results, we
employ a HFSS [20] model for comparison. Fig. 6 shows the
comparison of the scattering parameters (s-parameters) of the
filter computed by our higher order FEM (for the dominant
mode excitation) and by HFSS (a fully converged solution).
For the higher order FEM, all three set of results (for CLBFs,
NOBFs and MOBFs) are shown and we can see from the
figure that the agreement of the results is excellent.

V. CONCLUSION

We evaluated the performance of the max-ortho basis

functions in comparison with the classical and near-ortho
basis functions using two numerical examples. For the
scatterer analysis in open space we combined the max-orho
basis functions with the first order absorbing boundary
condition. The results show that the max-orho basis functions
retain their superiority regarding the condition number. We
also showed that the max-ortho basis functions lead to the
smallest FEM matrix condition number in a waveguide filter
analysis problem, which contains geometrically deformed and
electrically small finite elements.
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Method for Estimation of Electrical Distance
Between Antennas Based on MUSIC-Type
Algorithm

Nikola Basta and Miljko Erié¢

Abstract—A method for estimation of electrical distance be-
tween two realistic antennas, based on a MUSIC-type algorithm,
is proposed. A simple physical model of the antennas is assembled
in a full-wave electromagnetic simulation tool. The synthesized
signal accounts for the transfer function between antenna ports,
which is extracted from the electromagnetic simulation. The
method is verified through comparison with the actual distance
within the electromagnetic model and with the computed nor-
malized group-delay.

Index Terms—distance measurement; radio positioning; ToA
estimation; MUSIC algorithm;

I. INTRODUCTION

DEVELOPOMENT of the global navigation satellite sys-
tems (GNSS) and the increase of processing power of the hand-
held devices was immediately followed by development of in-
door positioning systems. Indoor positioning, as well as GNSS,
found their way to many commercial, military and safety-of-
life applications. In the heart of all positioning algorithms lies
the measurement of distance between the transmitter and the
receiver, using the information on the signal power, phase or
time of arrival (ToA) [1], [2]. The radio ranging algorithms
that are based on observation of the time of arrival (ToA) of
the signal, actually estimate electrical [3] rather than physical
distance between the transmitter and receiver antennas. The
antennas are often roughly approximated by point radiators,
which do not account for propagation of the signal within the
antennas themselves. The consequence of this mismodeling is
performance degradation of ranging, localization and direction-
of-arrival (DoA) estimators. The information on the propaga-
tion of the electrical signal in the antennas is carried within
the frequency- and angle-dependent phase and group-delay
characteristics of the transfer function between the antenna
ports [2], [4], [S]. In many cases, this transfer function cannot
be measured in situ. Since there is a constant demand for high-
level positioning accuracy, it is important to revisit the problem
of estimation of electrical distance with a careful modeling of
the received signal.

In this work we elaborate the signal model and propose
a MUSIC-type algorithm [6]-[8] for estimation of electrical
distance between two antennas in a typical narrowband ranging

Nikola Basta is with the School of Electrical Engineering, University of
Belgrade, 73 Bulevar kralja Aleksandra, 11120 Belgrade, Serbia (e-mail:
nbasta@etf.rs).

Miljko Eri¢ is with the School of Electrical Engineering, University of
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Fig. 1. Half-wave dipole and Yagi-Uda antenna, placed at distance dg in the
simulated two-antenna scenario.

procedure. In order to assess the error contribution of the
ranging algorithm, we compare the estimates to the normalized
group delay, derived from the transfer function between the an-
tenna ports that is obtained from an electromagnetic simulation
of the scenario.

II. PROBLEM FORMULATION

We consider a system consisting of a transmitter and a
receiver antenna, set apart by physical distance do (Fig. 1).
The position of each of the antennas is determined by a fixed
point at or close to the geometrical center of the antenna in
question. The signal that is being transmitted is a periodic
sequence of N symbols and of bandwidth BW, modulated
at central frequency f.. It is assumed that the transmitter
and the receiver have perfectly synchronized reference clocks.
The problem in focus is estimation of the electrical distance
between the antenna ports for different orientations of the
transmitting antenna and different sequence lengths N. The
estimation is based on M transmitted frames of the a priori
known signal sequence.

III. ELECTROMAGNETIC SIMULATION SETUP

The setup for the electromagnetic simulation consists of a
transmitting three-element Yagi-Uda antenna (port 1) and a
receiving half-wave dipole antenna (port 2), placed in vacuum
at distance dp = 5m, as shown in Fig. 1. The antennas are
realized as wire models in a full-wave solver WIPL-D Pro
[9]. They are optimized for operation at central frequency
fe = 1GHz, from which the central free-space wavelength
follows, A\ = ¢/f. ~ 0.3m. The radius of the model wires
is 7w = A¢/100. The Yagi-Uda antenna is inclined by angle
0 and is defined by the lengths of the reflector, feeder and
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Fig. 2. Scattering parameters of the two antennas for 6 = 0°.

director elements, respectively: h, = 0.5A., hf = 0.44)\.
and hq = 0.43)\.. The reflector and director are placed
at distances [, = 0.5)\. and g = 0.2)\. from the feeder
element, respectively. The length of the receiving dipole is
haip = 0.51 ).

The simulated scattering parameters (reflection and trans-
mission) of the antennas are shown in Fig. 2 for a wide
range of frequencies, where we can see that both antennas are
well matched at the central frequency. In our study we will
particularly observe the band of BW = 10 MHz around f.. In
order to generate the receiving signal, the forward transmission
parameter s21(f), i.e. transfer function between ports 1 and 2,
has been recorded for different inclination angles 6 € [0°, 75°]
with a 5° step, and at N uniformly spaced frequency points
within the band of interest, i.e. the set of sample frequencies
is defined by f, = fo — BW/2+ (n—1)BW/(N —1), where
n € {1,2,...,N}. This data will allow us to observe how the
signal-processing algorithm handles the angle-dependent phase
characteristic of the transfer function. In Fig. 3 example phase
and group delay characteristics of sa; are plotted with respect
to frequency. The group delay is derived from the transmission
parameter d
——arg{sa1(f)}. (0

1
ng(f) = 7%(:1‘](-

IV. SIGNAL MODEL AND ESTIMATION ALGORITHM

The proposed bandpass signal consists of a periodic and or-
thogonal polyphase sequence of complex numbers, b € CN*1,
|bn| = 1. Such sequences are usually used in spread-spectrum
systems [10]. In our examples, the sequence is transmitted
in M consecutive frames. At the receiver side, the transmitted
frame is altered by the transfer function, which includes impact
of antennas and of the propagation path, with addition of white
noise. Therefore, the m-th frame received by the half-wave
dipole, x,, € CN¥*1 can be expressed as time-domain (TD)
baseband model

Xm =ae’ +n,, m=1,2,.., M, ()

where 7, is the constant corresponding to the initial phase
of the m-th frame and n,, € CV*! is the noise vector. The
vector a is given by

a— (TW)H(§21 ® B), (3)
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Fig. 3. Phase and group delay of the transmission parameter s21 vs. frequency
for § = 0°.

where W € CV*¥ s the discrete Fourier transform (DFT)
matrix, T € RN¥*¥ is the permutation matrix (shifts DC
component to the center of the spectrum)

0  Inp
T = 4
[IN/z 0 } ’ @

In/2 is the identity matrix of size N/2, b =TWb e CNx!
is the frequency-domain (FD) spectrum of the sequence,
§21 € CN*1 is the column vector containing samples of the
parameter so1(f,) for a particular inclination angle 6 and do.
The hat sign denotes FD magnitudes and © represents the
Hadamard product.

The comprehensive model of the received signal for an
unknown distance d and angle 6 would be

Ym = uaej'ym + Ny, (5)

where u, = (TW)2(G& © 8o b), & € RV*! is the
magnitude spectrum of the transfer function and the elements
of B € CN*! are given by 3, = ¢/, where ¢, = ()
is the discrete phase spectrum of the transfer function. Thus,
in such a model we have 2N unknown parameters. This
large estimation problem can be simplified using following
approximations: (i) Since the transmitted sequence is known
and its magnitude spectrum is flat [10], we can perform
magnitude equalization at the receiver and obtain the equalized
signal and its respective model for a single frame as

x4 = (TW) (%, 0 [x]) = y%9=u%e" +n,, (6)

where [x| = = Zﬁle |X;,| is the mean magnitude spec-
trum of x, the operator |.| returns the vector of element-

wise absolute values, © is the element-wise division and
ut = (TW)H (3 ® b). (ii) Secondly, since the signal model
is narrowband, the phase characteristic is approximated by a
linear function, and therefore, according to (1), the group delay
is approximated by a constant 74 (f) ~ 7ga(fc) in proximity
of f.. It follows that Bn ~ Un(d) = e’jhcfnd, where it is
assumed that d ~ c7gq(fc). Let us define a grid of distances
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di, k=1,2..., K, that correspond to different traveling times
of the signal. We can now write the signal model for each
point on the grid

Yol(di) = u(dg)e™™ + 0y, @)
where u(d;) = (TW)H(¥(dy) ® b) and

‘A’(dk) _ [e—j%dkﬁ’e—j%ﬂdkfz,._.,e—jzfdka]T )

is the delay manifold vector. This model is justified by the
level of collinearity of vectors u and equalized a from (3),
given as

a®l = (TW)H (¥, o b), )

where Vo(dy, fo) = [e-i%drle  ei%dxf]T The mea-
sure of this collinearity is their scalar product x(d, 9, f.) =
[ufacd||/(]|ul/||a®d||). Our simulations show that for the
adopted set of parameters f., BW, 6 and dy, the collinearity
is as high as x > 0.941.

The simplified model in (7) is analogous to the signal model
used in spatial (angular) domain for sensor arrays, where u
corresponds to the steering vector and 7, to the phase at the
reference point of the sensor array. Due to this analogy, the
algorithms used for parameter estimation in angular domain,
e.g. MUSIC, can be applied in time-frequency domain. In order
to apply MUSIC, we define matrix X € CV*M which is
obtained by joining together M signal frames x{l, and the
estimation of its covariance matrix, Rxx = ﬁXXH. Finally,
for given 0, we can write the MUSIC spectrum as

u(dk)Hu(dk)
dp)"Q, Qlu(dy,)’
where Q,, € CV*(V=1) is the noise subspace matrix of Rxx
[7] and the denominator u(dy)"u(dy) represents a scaling

factor. The estimation of electrical distance between antennas
is obtained by

e, f.) = n}l%X{IPMUSIC(de}-

Pyusic(dy) = al (10

(11

V. NUMERICAL EXAMPLES

Besides the data acquired from the simulated scenario in
Fig. 1, in order to test the algorithm, we define here further
parameters of our experiment. We use sequences of differ-
ent lengths, N € {16,64,256}. Such sequence is repeated
M = 100 times. For each inclination angle # we perform 100
estimations of distance d, while the signal-to-noise ratio is set
to SNR = 30dB. In this study, such relatively high SNR
level is chosen in order to distinguish the imperfections of
the transmission channel and of the algorithm from the noise
effects. The search space (range) for the estimated distance d
directly affects the size of the problem, i.e. the computation
time. However, since the physical distance between antennas is
known a priori, in this work, a range of only 1 m is considered
in order to assess the accuracy of the proposed algorithm.
Therefore, the chosen grid resolution is Ad = 0.1 mm. The
results of the MUSIC estimations for N = 16, as well as the
normalized group delay at the central frequency c7zq(f:), are
shown in Fig. 4 with respect to 6. For each inclination angle, a
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Fig. 4. Estimation of electrical distance between antennas at different

inclination angles for N = 16. The dots represent single estimations, whereas
the solid line is estimated average for each inclination angle. Circles are
estimation based on the simulated group delay of the transmission channel.
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Fig. 5. Normalized root mean square of the estimation error vs. inclination
angle for different sequence lengths.

set of estimations is performed, the plot of which are given in
dots, whereas their average for the given angle is given in solid
line. The root mean square (RMS) of the estimation error with
respect to ¢4 (fc) vs. inclination angle for different sequence
lengths is given in Fig. 5.

In the first place, we see in Fig. 4 that the estimation
obtained through MUSIC algorithm fits very well to the
prediction given by the computed group delay, even for a
relatively short sequence, when N = 16. This verifies the
methodology for assessing the algorithm performance, using
electromagnetic simulation and proper reference magnitudes.
Furthermore, we notice that the relative discrepancy between
the simulated physical distance and the normalized group
delay is |do — cTga(fe, 0)|/Ac € [1.19,2.71]. This result might
seem surprising, knowing that the maximal diameter of the
simulated Yagi-Uda antenna is 0.84)\. and that of the dipole
is 0.51A.. In general, the discrepancy stems largely from
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the geometrical and electrical properties of the antennas and
the environment, which condition the phase characteristic of
the total propagation path. The example illustrates effectively
the realistic error levels in narrowband ranging applications,
in case no calibration of the group-delay bias is available.
Finally, in Fig. 5 we observe that the contribution of the
algorithm itself to the estimation error is relatively small.
Already for N = 256, the RMS of the error with respect to
cTgd(fec) approaches 0.75% in terms of A, which corresponds
approximately to 2.25 mm. The results in Fig. 5 show that the
accuracy doubles if the length of the sequence is increased
four times.

VI. CONCLUSION

A method based on a MUSIC-type algorithm for estimation
of the electrical distance between two antennas is proposed.
The estimation results are compared to the normalized group
delay, obtained from the electromagnetic simulation of the
scenario. The obtained ranging accuracy increases linearly
with the length of the signal sequence and can reach only
a fraction of the free-space wavelength. Due to the group-
delay variations and simplifications of the signal model, the
estimated electrical distance contains a bias error with respect
to the physical distance, which can exceed the size of the
antennas. This fact is important in distinguishing properties of
the estimation algorithm from the inherent physical properties
of the transmission channel.
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Trade-offs Between Maximal Forward Gain and
Minimal Backward Gain of a Yagi Antenna

Ana Djurdjevic, Dragan Olcan, Member, IEEE, and Branko M. Kolundzija, Fellow IEEE

Abstract—Optimization of Yagi antenna for maximum
forward gain and minimal backward gain is conducted.
Possible trade-offs between objectives are presented in the
form of a Pareto front. It is determined by weighting the cost
functions with many different combinations of weighting
factors. Antenna solutions are generated by genetic algorithm
and evaluated in method of moments based numerical solver,
in a frequency range of interest. Our main objective is finding
the best compromises between forward and backward gain of
Yagi antenna, using the outlined optimization process.

Index Terms—backward gain,
algorithm, Pareto front, Yagi antenna

forward gain, genetic

I. INTRODUCTION

An optimal design of Yagi antenna that meets required
criteria (eg. maximum forward gain, minimum backward
gain, maximum front-to-back ratio of gain etc.) is practically
impossible to find with analytical methods. Studies of
impact of lengths and spacing of elements on the radiation
performance leads to a complex nonlinear optimization
problem, due to fact that parasitic elements are strongly
coupled through electromagnetic (EM) field. With the
advancement of the computers and numerical EM
algorithms, the optimization has become common approach
for design of Yagi antenna.

In earlier research, different optimization techniques
based on adjusting elements’ lengths and distances are
developed in order to exploit maximum forward gain for
Yagi antenna [1-3]. As concluded in [2], there exist many
local minima in the optimization space, which is defined by
the total number of optimization variables and their
predefined (given) ranges. Since the introduction of Genetic
Algorithm (GA) [4], many researchers utilized its standard
form to solve the problem of optimization of Yagi antenna
[5-8]. Stochastic GA operators allow the algorithm to find
the global minimum in the given optimization space, thus
making it a good candidate for this optimization problem.

Having more than one objective leads to a multiobjective
optimization, which is intrinsically more complex than the
single criterion optimization. In that case, theoretically there
is no single best solution, but rather there is a set of Pareto
optimal solutions (i.e., a set of the best possible trade-offs
among specified criteria). Pareto front for the forward gain
maximization and backward gain minimization is estimated
using GA and presented in this paper. Note that the side
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lobes in the radiation pattern are not considered. Although it
might seem that maximization of the forward gain and
minimization of the backward gain are the same
optimization goal, the numerical results show that these
objectives are conflicting. This statement is in agreement
with results presented in [9], where a different method is
used to estimate Pareto front.

Il. YAGI ANTENNA AND ITS NUMERICAL EM MODEL

The analyzed twelve-element Yagi antenna consists of a
driven element, a single reflector and ten directors [10]. The
antenna is designed to operate at the central frequency of
300 MHz, and the frequency range of interest is 295 MHz to
305 MHz. EM analysis is performed in WIPL-D software
package [11] that is method of moments (MoM) based
numerical solver, with higher order basis functions. The
optimization is done in an external application, created for
the purpose of the presented work. Every element of the
antenna is modeled as a wire, forcing kernel to use a thin-
wire approximation, which is very fast and sufficiently
accurate for the thin wires [8]. The main reason for using
thin-wire approximation is to speed up the numerical EM
analysis. In every iteration of the optimization, a different
set of antenna parameters is provided to WIPL-D kernel for
the numerical EM analysis. After the simulation, the
obtained output results for antenna gain in forward and
backward directions are used to evaluate the cost function
used in the optimization. The total number of unknowns in
MoM matrix goes up to 36, where the limit is established
from the case when the lengths of elements take the highest
values from the ranges of optimization variables. With
nowadays computers, this is a relatively small-size
numerical problem that results in acceptably fast numerical
analysis (typically 0.2 s per simulation). The used desktop
computer configuration consists of Intel® Core™ i7 CPU
950@3.07 GHz and 24 GB of RAM.

The optimization variables are lengths and spacings
between the elements of the Yagi antenna [10]. All the
dimensions are chosen from the interval from 0.2 A to 0.8 A,
where A is a free-space wavelength at 300 MHz. Lengths of
each director, as well as spacings between the adjacent
directors, are kept the same, resulting in the total of six
optimization variables. The two considered optimization
criteria are: the highest possible gain in the forward
direction, and the minimal possible gain in the backward
direction.

I1l. ALGORITHM USED FOR MULTIOBJECTIVE OPTIMIZATION

From a general perspective, every optimization algorithm
consists of the following steps: creating a starting solution or
groups of solutions, evaluating the cost functions of the
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current solution(s), checking whether some of the solutions
satisfies given criteria, creating a new set of solutions and
repeating the process. The optimization stops either if the
goal has been achieved or the maximum allowed number of
iterations has been attained. In the first case, the solution of
the problem is provided to the user. In the second case, the
best found solution is provided to the user.

In the problem of finding trade-offs between forward and
backward gain of Yagi antenna we are looking for the best
possible solution that can be found for the given number of
iterations.

The fitness functions for these two objectives are defined
as follows:

fl = A_Gfront ) (1)
f2 =B +Gback : (2)

Here Gont denotes gain in dBi in the forward direction, and
Grack denotes gain in dBi in the backward direction. Ggont is
expected to be positive [10], while Gpack should be negative
for a good solution from an engineering point of view. The
variables A and B are positive numbers chosen to be large
enough to ensure strictly positive values for both cost
functions in all possible cases in the optimization problem.
Moreover, a proper choice of the constants makes different
criteria comparable in terms of their (numerical)
significance, relative one to the other. Combining these two
criteria into a single cost function, for the given multicriteria
optimization problem, is obtained by summation of (1) and
(2) as

f=f+1,. 3)

Considering the forms of f; and f, together with the
optimization goals, it is obvious that a lower cost function
always points out to a better solution. Formula (3) is
calculated in N equidistant frequency points, so the final
cost function is expressed as a root mean square deviation:

(4)

where f; stands for value of f at i-th simulation frequency.
Note that in the case of Yagi antenna optimization we use
N =5.

A. Genetic Algorithm

The standard form of GA has been adapted to this
problem according to [10]. An individual here refers to a
different antenna design solution, described with its
variables that are called genes in the GA terminology. The
initial population was generated randomly, using uniform
random generator.

In the process of the selection, the quality of each solution
is examined by evaluating the fitness function (4). Selection
operator is realized using tournament selection. In every
round, pairs of individuals are randomly chosen to compete
in "duels", and the ones that fit better (i.e., the ones that have

lower cost functions) qualify for the next round of the
tournament. The tournament ends when the number of not
eliminated individuals drops to initially defined number of
survivors k. Survivors are used to create solutions
("offspring™) for the next generation. Although the best
solutions are being forced in average through the
tournament selections, there is a good chance that a solution
that might not be in the fittest k (if we would sort the whole
population at once), becomes chosen for crossover just
because of having randomly chosen less-fit opponents. This
effect is intentional and its purpose is the preserving of
certain amount of diversity among the solutions. This is
what makes tournament selection significantly different and
more applicable in comparison to the pure elitism, which
allows only the best individuals to take a part in crossovers.

Once the selection is finished, a crossover is performed.
The crossover is a process of recombination parents’ genes
(optimizing variables), in order to produce solutions for the
next generation. Two parents are randomly chosen to create
three descendants according to formulas (5), (6) and (7),
with predefined probability of the crossover P, =0.8, as in
[10]. In other words, this probability represents chances that
the two individuals will be used for crossover after being
chosen, and will not be discarded.

d, =p, +a(p,—p,) (%)
d, =p, —a(p,—p,) (6)
d3 =P, +0£(p1 _pz) (7

Here d and p represent descendant’s and parent’s
chromosomes respectively, both defined as a vector of
optimization variable (genes), while o is a real number,
randomly generated from the interval [0,1] for every
crossover. Crossover stops when the number of new
solutions are created so that the whole next generation is
populated. In attempt to avoid possible multiple
convergences to the same local minima in the optimization
space, not a single solution from the previous generation is
allowed to be used in the next generation.

The mutation operator is realized as a replacement of
genes with the randomly chosen values with uniform
distribution in the range between the lower and the upper
bound for the selected variable. For each gene of each
generated solution, mutation is to be executed with the
probability P, =0.15. The controlled mutation causes the
other parts of optimization space to be explored, which may
eventually lead to a better solution. Increasing the
probability of mutation degenerates even good solutions,
making it more difficult or impossible for GA to converge.

B. Pareto Front

In cases of multiobjective problems, there is rarely a
solution that dominates all the other solutions with regard to
all the criteria. Most often the criteria are conflicting, so it is
not possible to make an improvement in one objective
without deterioration the others. Pareto front is the set of the
best possible trade-offs that can be theoretically achieved,
and it is defined by an infinite number of Pareto-optimal
solutions, if the optimization space is continuous and if the
criteria are defined as real-number functions. A solution is
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pareto optimal if there is no other solution in the search
space that has better performances for all the given
objectives [10], [12]. Pareto front provides deep insight into
compromises that should be made for the sake of overall
performance, hence one can choose the most suitable
solution for a problem under consideration.

The aim of this work is to present the best found
compromises between the maximum gain in the forward
direction and the minimum gain in the backward direction
for Yagi antenna described in Section Il. The method starts
with weighting the penalties for cost functions (1) and (2),
thus increasing the importance of one or the other criterion
in the cost function. Now the total cost function becomes:

ftot =W f1 W, fz (8)

By replacing fir in (4) with expression from (8), the final
cost function used in the optimization yields to:

N
Z (Wl fl,i +W, f2,i )2
Fot = = N ) )

where f1; and f,,; denote values of (1) and (2) on i-th
frequency.

In order to decrease the cost function defined above, the
optimization will tend to produce solutions which minimize
the cost function that is associated with higher weighting
coefficient, relative to the ratio of (1) and (2). Roughly
speaking, the ratio of the separate cost functions in the final
solution is expected to be proportional to the ratio of their
weighting coefficients. From that perspective, it is clear that
A and B in the definitions for f; and f, should be chosen
carefully, since they directly influence the final cost
function. It should also be noted that values of the forward
and the backward gain that are summed here, significantly
differ for various antennas.

In order to determine the Pareto front accurately, the
optimization needs to be performed for all possible
combination of wy and w» [12]. The theoretical number of
those combinations is infinite. For that reason, only few
extreme scenarios are enough to get an engineering insight
into the distribution of the optimal solutions, i.e., to estimate
the Pareto front.

IV. ANTENNA OPTIMIZATION AND RESULTS

The parameters used in GA are as follows: the population
has 16 solutions, 4 selected solutions from the population
creates the next generation, the total number of generations
is 100. One iteration is an evaluation of the cost function, so
there are 1600 iterations in a single optimization run, i.e., to
find the cost functions for all solutions in one generation of
GA. The variable A in f; is chosen to be 20 dBi, and B in f,
is chosen to be 50 dBi. These values are determined to be
related to the gain of the best-found solutions when the
algorithm was run solely for the front and the back gain, as
shown in Fig. 1. and Fig. 2. The total number of frequency
points in EM analysis and the optimization is 5. The sets of
weighting coefficients used for finding the Pareto front are
(W1=0, W2=l), (W1=1, W2=0), (W1=l, W2=l), (W1=1, W2=2),

(W1=2, W2=1), (W1=1, W2=3), (W1=3, W2=1), (W1=1, W2=5),
(W1:5, szl), (W1:l, WZZlO), (lelo, W2:1), (W1:1,
w>=100), (w;=100, wy=1). For each pair of weighting
factors, GA is restarted 10 times, and the best-found
solutions from every run are presented as the results.
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Fig. 1. Gain in forward direction in terms of frequency, obtained for (w;=1,
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Two new variables, x and y, are presented in Fig. 3 and
they are defined as root-mean-square of the forward and
backward gains as:

0 2
Z(A_ Gfront,i)
i=1

X= N )
Z(B + Gback,i )2
=\ (10)

where Gironti and Gracki Stand for values of gain on i-th
frequency, and N = 5.

It can be seen from Fig. 3 that those solutions found for
same weighting factors in different optimization runs are
pretty much grouped on the graph and they converge to one
part of the Pareto front. It is observed that some solutions on
the Pareto front which would make the curve smoother were
not found in the given number of iterations. A better Pareto
front approximation could certainly be achieved by
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additional adjusting of weighting factors and more
optimization runs.
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Fig. 3. Pareto Front in terms of root mean square deviations for best-found
solutions in frequency range 295 to 305 MHz.

As it is shown in Fig. 2, bandwidth where the front gain is
less than 3 dB reduced from the maximum value is about
19 MHz wide. However, in Fig. 3 it is shown that the
suppression of the backward lobe has extremely narrow
bandwidth, with more than 40dB differences with
frequency shift of 5 MHz, in this case. Therefore, the best-
found solutions in terms of average values of gain in the
given range are presented in Fig. 4.
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Fig. 4. Pareto Front in terms of average values of gain for best-found
solutions in frequency range 295 MHz to 305 MHz.

It can be seen from Fig. 4. that it is possible to keep the
average back gain of about -20dBi, up to average front gain
of about 12.5 dBi. With further increment of front gain, back
gain increases rapidly, entering zone where the objectives
start to be more mutually conflicting. Due to the physical
nature of the problem, the performances are better in a very
narrow bandwidth, as can be seen in Fig.1 and Fig. 2.
Radiation pattern at 300 MHz in H and E plane for one of
optimal solutions are given in Fig. 5. and Fig. 6.

V. CONCLUSION

The best compromises between maximization of gain in
the forward direction and minimization of the gain in the
backward direction, for twelve-element Yagi antenna in
frequency range 295 MHz to 305 MHz are presented and

analyzed in this work. It is shown that in order to achieve
value of front gain close to maximum possible, one should
sacrifice suppression of back lobe level. However, there are
numerous optimal solutions for relatively low level of
backward radiation, with not so high deviation of front gain
from its maximum value. It is also observed that much
greater front-to-back ratio could be found in one frequency
point, but it is question of significance of these solution
when it comes to practical realization and operation of the
antenna. Genetic Algorithm used for optimization is
confirmed to be suitable for this multi minima optimization
problem.
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The Influence of Different Realization of
Ground Plane on a Characteristic of HFSWR
Transmitter Monopole Array
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Member, IEEE and Slobodan V. Savi¢, Member, |IEEE

Abstract—Mutual coupling of antennas in systems that use
multiple antennas is a phenomenon that can be detrimental to
a system’s functionality. Mutual coupling of antennas in an
existing High Frequency Surface Wave Radar (HFSWR)
transmitter is analyzed in this paper. Earlier measurements of
VSWR had indicated that significant coupling may be present.
After various simulations, its presence was confirmed, and it
was shown that the simulated radiation pattern has differences
compared to the theoretical. In this paper, simulations were
performed to analyze the effects of different realization of
ground planes on antenna coupling and its effect on radiation
pattern while keeping the deployment area and antenna
foundations intact. The nature of the coupling was analyzed
along with different realizations of ground planes. Simulation
results are presented and discussed in details, showing that
coupling through the free space is dominant in nature of this
effect.

Index Terms—Ground Realization, HFSWR, Monopole,
Mutual Coupling.

I. INTRODUCTION

Economies are becoming heavily reliant on overseas
shipping making maritime traffic denser than ever. Without
going further into the significance of maritime areas, the
Exclusive Economic Zone (EEZ) is where it practically all
takes place. The EEZ is a strip of sovereign water going
200 nautical miles (around 370 km) from the coastline to the
open sea [1]. To control such a large area, an efficient
surveillance system is needed, which is no easy feat.
Microwave radars and electro-optical systems can only
bypass the curvature of the earth using mobile platforms,
this solution does not have a satisfactory uptime, nor
operational cost.

In contrast to that, high frequency surface wave radar
(HFSWR) is a system that satisfies mentioned needs.
HFSWR is a radar that works in the High Frequency (HF)
band ranging from 3 MHz to 30 MHz [2-3]. These
frequencies allow propagation of electromagnetic (EM)
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surface waves closely coupled to some surface, in this case
seawater. Initially, they were used for oceanographic
observations such as the height and direction of waves,
speed and direction of currents, as well as tsunami detection
[2-4]. Such waves follow the curvature of the earth,
allowing for detection well beyond the horizon, going as far
as 370 km, which is a requirement for complete EEZ
observation [5-6].

The analysis presented in this paper is inspired by
experience gained from currently operating system in the
Gulf of Guinea [6-9], which represents the backbone of a
complex multi-layer system for maritime surveillance [10].
It is a frequency-modulated continuous-wave (FMCW)
radar occupying a 100 kHz bandwidth with central
frequency at 6.9 MHz. The system is comprised of 2
separate sites, transmitter (Tx) and the Receiver (Rx). The
receiver is an antenna array consisting of 16 monopole
antennas. The transmitter is made of 4 quarter-wave
monopole antennas, as illustrated in Fig 1. Further details
regarding this radar can be found in [6-8].

Certain measurements of this radar have raised suspicion
of significant mutual coupling between transmitter antennas.
Different realizations of ground plane and its influence on
the coupling of antennas will be discussed.

Fig. 1. Transmitter site located in the Gulf of Guinea.

Section 1l contains a brief introduction to the problem of
mutual coupling of antennas, and all relevant data for used
numerical models will be presented. Section 111 will present
several numerical models of the ground plane and its effects
on antenna array performance. Conclusions are presented in
Section IV.
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Il. MUTUAL COUPLING

Mutual coupling between array elements can be separated
as a free-space coupling (radiation coupling) and/or
coupling through currents flowing on the ground plane
shared by these elements (conductive coupling) [11-13].
Regardless of its nature, the mutual coupling of array
elements generally affects radiation pattern and the input
impedance of array.

As can be seen from Fig. 1, the transmitting array consists
of 4 antennas arranged to be corners of a rectangle. The side
facing the shoreline is 0.5, while the side perpendicular to
it is 0.15), where A is the free space wavelength at 6.9 MHz.
The 0.15 A separation is of particular importance since it is
believed that it is the main reason for mutual coupling.

VSWR measurement was performed for individual
antennas and the splitter that feeds them. VSWR measured
for each antenna was below 1.5 at 6.9 MHz, as shown in
Fig. 2 for one of the antennas. For this measurement, one
antenna is excited while all others are closed with loads. In
the second measurement, all transmitting antennas are fed
by a 1:4 splitter, and then VSWR at the input of splitter is
measured. As can be seen from Fig. 2, in this case, the
VSWR was 3 and practically flat in a 200 kHz span around
6.9 MHz. The splitter is declared to have VSWR less than
1.1. Because of this, it was suspected that antennas are
(significantly) mutually coupled.

4.0
— Single antenna
3.5 {—— Splitter input
3.0 A
5 251
[74]
Z
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Fig. 2. VSWR measured for one antenna (black) and the input of a 1:4
splitters connected to 4 antennas.

This prompted further analysis, and simulations were
performed using the software package WIPL-D Pro [14]. All
WIPL-D Pro simulations were performed at 6.9 MHz. To
demonstrate the mutual coupling, the initial model was
made with vertical monopoles arranged exactly the same as
those for the transmitter of HFSWR in the Gulf of Guinea.
However, to simplify the model, the ground for the
monopoles is made as an infinitely large perfect electric
conductor (PEC) plane. The excitation of the front row of
antennas (3 and 4), closer to the sea, is delayed for 126° to
simulate longer feed cables compared to those that excite the
back row of antennas at the site in the Gulf of Guinea. This
was done in order to get a null in radiation pattern away
from the sea (direction of 270°), while having a sufficiently
wide main lobe. Common antenna array theory was used for
this calculation [15-16]. The theoretical model was also
derived from these calculations. It implies monopoles with
infinite PEC ground plane without mutual coupling. Fig. 3.
shows the overlay of the theoretical radiation pattern versus
the WIPL-D Pro results. Both of the given radiation patterns
are obtained when all 4 antennas are active while being

normalized to 0 dB, meaning that they are not absolute
values.

Theoretical

WIPL-D Pro

Fig. 3. Overlay of theoretical radiation pattern (red) versus WIPL-D Pro
results (yellow) when all 4 antennas are active.

The sideways null in results has a purpose of preventing

the signal leakage from transmitter directly to the receiver,
and it is fairly equal in both models. However, the null away
from the sea has drastic differences. Using the WIPL-D Pro
software, it is shown that there is a significant lobe in the
direction of 270°. It seems reasonable to assume that 0.151
spaced monopoles are strongly coupled, which changes
radiation pattern relative to theoretical.
In models with multiple excitations, WIPL-D Pro allows
analysis when only one excitation is active at a time while
the others are terminated with a short circuit. This short
circuit is not consistent with the measurement set up and the
real system. To remedy this, all non-excited antennas are
terminated with a concentrated load of 50 Q. This is shown
in Fig. 4, where only one antenna has an active excitation.
The displayed radiation pattern is shown for the horizontal
cut. From this result, we see that other (non-excited)
antennas affect radiation pattern, since the monopole
antenna has an omnidirectional radiation pattern. It is
important to note that WIPL-D presents the radiation pattern
from the center of the coordinate system, regardless where
the excitation is.
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Fig. 4. Radiation pattern in the horizontal cut of a singly excited antenna in
the transmitting array in the vicinity of all others antennas.

Looking at the s-parameters, in this case, off-diagonal
elements of s-matrix, it can be seen that monopoles have
significant coupling (especially ss1), as shown in Table I.
Antenna numeration (A1-A4) is counter-clockwise starting
from the left antenna farther from the sea, meaning 1-2-3-4
counter-clockwise from that antenna, as shown in Fig. 1.
Keep in mind that this analysis is reciprocal and that the
array has a plane of symmetry.
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TABLE |
S-PARAMETER MAGNITUDES BETWEEN EACH ANTENNA FOR INFINITE PEC
GROUND
sl ~6.9350 [dB]
|S42] -20.7820 [dB]
s3] -17.5511 [dB]

In these kinds of implementations, ideally, parameters
from Table!l should be zero to ensure the desired
performance. Also note that s-parameters of 0.5\ spaced
antennas (ss2 and ss43) are more than 10 dB lower in
amplitude, meaning that the coupling effect is of lesser
intensity. This clearly signifies that mutual coupling in this
model is a consequence of antennas being too close to each
other. At first glance, a simple solution would be to simply
separate antennas further and calculate the necessary phase
shift. However, a larger site is not an option. For HFSWR in
the Gulf of Guinea, it is very difficult to find and then
obtain, suitable land, especially due to the rising costs of
coastal land. It is also worth mentioning that sometimes
increasing antenna separation can increase coupling [13].

In this paper, analysis will be made on effects of different
ground planes on the mutual coupling of antennas without
changing the size of the transmitter allocated area, or
drastically changing the array configuration. The area
allocated for a transmitter in the Gulf of Guinea is
approximately 92 m x 76.5 m, with the wider side being
parallel to the sea. In Fig 5. the WIPL-D Pro model with a
finite PEC ground can be seen. It should be noted that the
allocated area is in fact the area for the ground plane for the
transmitter array.

76.5m

Fig. 5. Finite PEC ground model cut into 4 plates.

I1l.  SIMULATION WITH DIFFERENT GROUND PLANES

Since the initial request is to keep the same antenna
separation, there is very little that can be done against free-
space coupling. This leaves the possibility to reduce mutual
coupling via manipulations of currents flowing through the
ground plane. Previous WIPL-D Pro model has an infinite
PEC plane as ground, which obviously cannot be
constructed in practice, but represents a good starting point.
The first modification will consist of a finite PEC plane with
dimensions equal to space allocated for the transmitter site,
as mentioned in the previous chapter. The magnitudes of
s-parameters in dB of such a configuration are presented in
Table II.

TABLEII
S-PARAMETER MAGNITUDES BETWEEN EACH ANTENNA FOR FINITE PEC

GROUND
lsa1] ~7.3780 [dB]
[s42] -22.1203 [dB]
lsaa] ~17.3683 [dB]

Compared to the results from Table I, it can be seen that
coupling is now slightly reduced, but practically it remains
the same. The next step is to look at current distributions for
finite PEC ground model. Please note that all further figures
regarding current distribution display current density
amplitude.

The current distribution of a finite PEC ground model
when only excitation 4 is active is shown in Fig. 6. It can be
seen that there is a considerable current at antenna 1 feed
point, while much less at feed points 2 and 3. The unit of
current density displayed is mA/m.

| Jimaim) Al Erements

Fig. 6. Current distribution for finite PEC ground model when only
generator 4 is active.

From this analysis, it is difficult to discern the exact ratio
of contribution of current and free-space coupling. Antennas
4 and 1 have significant currents in the sector of a ground
plane between them. The next step in order to try to reduce
coupling is to galvanically separate all the antennas. The
idea is to separate the current finite PEC into 4 equal plates,
as shown in Fig. 7. The width of all slits is 2 m, which was
chosen as to have an adequate graphical presentation.

l

Fig. 7. Finite PEC ground model cut into 4 plates.

Next, we will determine how s-parameters depend on the
width of the slit. A sweep was done with slit width ranging
from 0.5 m to 3 m in increments of 0.5 m. The results are
shown in Fig 8. The abscissa of Fig. 8 is a separation width
value, and the ordinate is the linear magnitude of
s-parameters. Four curves displayed represent magnitudes of
|sa1l, |Saz], [S43] and |sas| sShown in blue, red, purple and green
respectively in [dB].

API'1.53



MG 60 Mz .
-5.00 S4.1

2000

25,00+
025 080 135 190 245 300

Fig. 8. S-parameter magnitude in respect to the slit width.

From Fig. 8 it can be seen that the coupling of the nearest
antennas (Ss1) is reduced as slit width increases. The
coupling of the diagonal antenna (ss2) remains practically
unchanged. Interestingly enough, coupling for 0.51
separated antennas (ss3) slightly increases with slit width
increase. The next step is to see the current distribution.
Results for slit width equal to 2 m are presented in Fig. 9.
Again, only generator 4 is active.

J(mAm] Al Elements

Fig. 9. Current distribution for finite PEC ground model with slit when
only generator 4 is active.

Fig. 9 shows interesting results. There are significant
currents on all four plates’ edges, implying a strong
radiation coupling since there is no galvanic contact
between these plates. The horizontal cut of the radiation
pattern when all four generators are turned on is shown in
Fig. 10.
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Fig. 10. Radiation pattern in the horizontal cut of finite PEC ground model
with slit with all 4 active generators.

From the Fig. 10, we can see that there is significant
radiation directly above the antennas, going up to 3 dBi. The
back-lobe intensity is about 3 dB lower than the frontal main

lobe which is 5.19 dBi. This solution proves to be energy-
inefficient because a significant portion of the energy is
radiated upwards, providing no benefit for HFSWR
analyzed in this paper. In fact, this occurrence can degrade
radar operation as it allows for significant ionospheric
reflections which for this type of system are interference.
Based on this, one should be very careful when attempting
this kind of antenna decoupling.

Final analyzed realization of ground for the monopoles
will be in the form of radials. Radials are wires going from
the feed point of the antenna and act as a ground plane for it.
They are galvanically connected to the “cold” conductor of
the transmission line, in this case, coaxial cable. Their
purpose is to increase the radiation efficiency of an antenna
by preventing losses in the earth, which is far from a perfect
conductor. Increasing the number of radials and their length
acts as a better ground. The transmitter of HFSWR in the
Gulf of Guinea has 36 radials per monopole, with 35 m of
length. This length is greater than the distance between each
transmitting antenna, especially for distances of antenna
pairs 1-4 and 2-3. Because wires in the WIPL-D Pro model
must not have unspecified intersections to ensure an
appropriate model, radials should be carefully modeled. The
radials placed on the real site are not symmetrically placed
around the monopole itself. A reason for this is to fit all
wires and to enable movement of personnel on-site. It
should be noted that all of them are galvanically isolated
with rubber. Therefore, the transmitter is modeled as close
as possible to the deployed antenna array. Antennas 1 and 3
are rotated 5° around their monopoles, while antennas 2 and
4 have no rotation. Furthermore, all antenna feed points are
slightly elevated, all to prevent wire intersection, and this
model is presented in Fig. 11.

Fig. 11. Model of transmitting antennas with radials.

Similar to previous cases, s-parameter magnitudes in dB
are shown in Table I1I.

TABLE I
S-PARAMETER MAGNITUDES BETWEEN ANTENNAS IN RADIAL GROUND
MODEL

|Sa1] -6.7407 [dB]
jsa0] 242707 [dB]
/529 719.2778 [dB]

From these results, it can be seen that antenna coupling is
on a similar order with previous cases. The radiation pattern
of the array with radials is shown in Fig. 12.
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Fig. 12. Radiation pattern for array with radials when all generators are
active.

It can be seen that the main lobe is tilted upward. This is
typical for a monopole with radials and has nothing to do
with coupling [17]. More importantly, the back-lobe is still
very pronounced as it was expected (similar to results in
Fig. 3), indicating significant antenna mutual coupling, more
clearly seen in Fig. 13.
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Fig. 13. Radiation pattern in the horizontal cur for array with radials in the
horizontal cut when all generators are active.

IV. CONCLUSION

In this paper, the effects of different realizations of the
ground plane on mutual coupling of antennas on the
transmitting array of a deployed HFWR were analyzed. The
simulated radiation pattern has differences compared to the
theoretical, mainly in the 270° direction. Different
realizations of ground planes provided similar s-parameters.
Considering the restrictions of keeping the antenna array
configuration and the maximum allocated area the same, this
analysis indicates that a different approach should be taken
to affect mutual coupling. This opens the course of future
work in the form of obtaining more information about free
space coupling of the transmitter array antennas and
methods that can affect it.
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Modeling of Matching Load for Slotted
Waveguide Antenna

Bojan Milanovi¢, Stefan Filipovi¢, Vladimir Pordevié¢ and Vladimir Petosevié

Abstract—In order to reduce simulation time, waveguide
matching load with rectangular shape is proposed. Matching
load is modeled as dielectric layer with losses introduced via
imaginary part of the layer’s relative permittivity and
permeability. In order to estimate quality of the proposed
shape, WIPL-s technical support modeled for us pyramidal
shape waveguide matching load, which we used as the
reference. All models are made in the WIPL-D PRO-16
software. Rectangular shape is proposed in order to reduce
boundary area which has led to reduction of number of
unknowns. Comparing the execution time it was shown that by
modeling the load as rectangular shape dielectric layer, pattern
deviation less than 0.5dB is obtained, while simulation time is
noticeable reduced.

Index Terms—Waveguide matching load; slotted waveguide
antenna; travelling wave; WIPL-D.

I. INTRODUCTION

Slotted waveguide array antenna, firstly was made in
Canada, during the Second World War. At the beginning, it
was used in military ground and airborne radar systems for
target detection and tracking. Afterwards, application of
slotted waveguide array antennas spread to many
applications such as: remote sensing from aircraft and space
vehicles, microwave communication links, weather
forecasting, environmental monitoring, climate change
studies, etc. Application of the slotted array antenna for
automobile collision avoidance systems is also considered
[1]. Broad spectrum of application of slotted waveguide
antennas is due the simple structure, suitable for mass
production with low cost, simple feeding, precise control of
aperture distribution and low loss [2, 3, 4]. Slotted
waveguide antennas are often used in radar systems because
of high gain requirements and mechanical robustness [5].

There are two types of slotted waveguide array antennas:
arrays with standing wave, and arrays with traveling wave
[5]. Standing wave array antennas are closed with
conducting wall, producing reflected wave due which
standing wave is formed. Travelling wave antennas are
closed with waveguide matching load. No reflections are
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produced so no standing wave is formed. Advantage of the
travelling wave solution is broader bandwidth.

In order to familiarize with behavior of a radar antenna,
model of a slotted waveguide antenna array was built. ldea
was to generate and investigate behavior of the antenna
pattern for different frequencies, slot angles and to
investigate origin of the squint angle. According to the
proposal from the WIPL-D technical support, for this
research, a matched load with pyramidal absorber is formed.
Simulations are started and noticeable length of the
simulation time for larger antenna array is noticed. In order
to reduce simulation time, alternative solution was needed.
According to [6], from the boundary conditions for
tangential field components, equivalent electric and
magnetic currents placed over the dielectric boundary
surface should be uniquely determined. Since the pyramidal
absorber has relatively large boundary surface, instead of
pyramidal absorber, idea was to reduce surface size by
introducing  square shaped dielectric  layer  with
corresponding tangent losses. In such manner, shorter
simulation time was expected.

Il. SLOTTED WAVEGUIDE ANTENNA

Slotted waveguide antenna is waveguide with a slot on
the wider or the narrower wall of the waveguide (Fig. 1).
Antenna slot radiates if the slot introduce discontinuity
which interrupt the flow of the current along the waveguide.
If the current flows around the edges of the slot, the slot will
act as dipole antenna [5]. Radiated power from the slot is
regulated by tilt angle of the slot. For this simulation and
frequency span from 2.9GHz to 3.1GHz, waveguide WR248
(72.136mm x 34.036mm) is used.

Fig. 1. Slotted antenna with the tilted slot on the narrower side.

Length of the slot should be equal to the half of the free
space wavelength. Since this length is larger than the length
of the narrower wall, part of the slot is edged (Fig. 2) in to
the top and bottom walls [1].
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Fig. 2. Waveguide slot edged in to the wither wall.

In order to obtain travelling wave, antenna is closed with
matching load (Fig. 3.), proposed from WIPL-D technical
support [7].

Fig. 3. Position of the pyramidal absorber inside the waveguide.

Pyramidal absorber is two waveguide wavelengths long,
with half waveguide wavelength long cubic shape absorber
added at the end. Conductivity of the absorber is set to 3
S/m while the real part of the relative permittivity of the
absorber is set to 1.1 and imaginary to zero. Simulation of
the model with one slot elapsed for 15.62sY. Pattern of the
single slot is show in (Fig. 4).

Gon (]

Fig. 4. Pattern of the single slot antenna.

Due to travelling wave condition, pattern is slightly tilted
toward waveguide, so in practice, in order to obtained
pattern perpendicular to the waveguide, two of this slots are
set half wavelength apart, with opposite directions of the tilt.

Model of antenna with two tilted slots is shown in Fig. 5.
Simulation time for this array was 34.91s.

Fig. 5. Two slots antenna array.

Y processor Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz, 2400 Mhz,
2 Core(s), 4 Logical Processor(s)

Antenna pattern of the two slot array is shown in Fig. 6.
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Fig. 6. Antenna pattern of the two slots antenna array.

Simulation for 20 elements antenna array, shown in Fig.
7, elapsed for 117.42s. 2D antenna pattern is calculated for
1441 points in azimuth plane and 1 point in elevation plane.

Fig. 7. Twenty elements antenna array.

Antenna pattern of the twenty slots antenna array is
shown in Fig. 8.
Gain [U]

Fig. 8. Twenty elements antenna array pattern.

I1l. MATCHED LAYER

In order to match short end to the waveguide, absorber
with complex relative permittivity and permeability is used.
This layer introduces attenuation of the wave passing
through, while keeping matched surface with the air. Wave
impedance in the waveguide can be calculated by the
equation:

Ho - Hy 1

. 2
50 Er ( 1 J
1_ -
Ac - My - &y

In order to keep no reflection from the air to dielectric
boundary, wave impedance of the dielectric should be equal
to the wave impedance of the air. In case of the plane wave,
that can be easily achieved by setting relative permittivity
and permeability to be equal and by introducing imaginary
part with negative sign. But, for waveguide, that is not so
easy task, since relative permittivity and permeability
appears both in front and under the fraction of equation (1).
Since in our version of the WIPL, we don’t have

ZTE10 = (1)
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optimization tool, relative permittivity and permeability
values are obtained by try and error. Idea was to obtain
smallest reflection coefficient. In such manner, relative

permittivity  of grzl—j-0.15 and  permeability

4y =1—j-0.15 are used.

Fig. 9. Rectangular dielectric absorbing layer.

IV. RESULTS

Simulations for single slot, two slots and 20 slots antenna
arrays with rectangular dielectric absorbing layer are made.
For single slot antenna simulation elapsed for 4.78s
compared to 15.62s for model with pyramidal absorber.

In the Fig. 10. antenna patterns for model with matching
load modeled with pyramidal shape absorber and matching
load modeled as rectangular shape absorber are shown
overlaid. From Fig. 10. one can see good matching of these
two patterns. Gain difference is of the order part of the dB.

Sain [dB]

j00 T e
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60° - 2 Pyramidal

Fig. 10. Single slot antenna pattern comparison.

For two slots antenna array, elapsed time was 6s
compared to 34.91s for model with pyramidal shape
absorber. In the Fig. 11. antenna patterns for two array
antenna model with pyramidal and model with rectangular
absorbers are shown overlaid. From Fig. 11. one can see
good matching of these two patterns.
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Fig. 11. Two slots antenna pattern comparison.
For 20 slots antenna array, elapsed time was 82.81s

compared to 117.42s for model with pyramidal absorber.
Same as for previous models, patterns for two different

shapes of the matching loads are shown overlaid in Fig. 12.

Gain [dB]

1116 > « 1 Rectangular
2Pyramidal

210

Fig. 12. Twenty slots antenna pattern comparison.

V. CONCLUSION

By using different shape of the matching load model,
simulation time is significantly reduced. For single slot
antenna, simulation time is reduced from 15.62s to 4.78s
with no noticeable differences in antenna pattern. For two
slots antenna, simulation time is reduced from 34.91s to 6s
while, for twenty slots antenna array simulation time is
reduced from 117.42s to 82.84s. This analysis shows that by
reducing total surface area of the boundary between
domains, simulation time can be reduced with no significant
loss in pattern calculation. Simulations are made for one
frequency and single tilt angle of the slot. By taking
simulations for many frequencies and many slot tilt angles,
this elapsed time reduction become more significant.
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Phased Arrays of Cavity—backed Antennas for
5G Smartphones with Metallic Casing

Miodrag Tasi¢, Member IEEE and Dragan Nikoli¢

Abstract—Cellular handset antennas for future 5G
applications need to provide beam steering, so the antenna focus
is on the phased arrays. For the metallic casing handsets, a
cavity—backed antenna is a natural candidate for an element of
the phased array. Cavity can be cut in the handset wall and filled
with the dielectric, thus potential waterproofing can be
maintained. Radiation is trough the cavity, hence the metallic
casing is not an obstacle. In this paper we use electromagnetic
models to investigate the problems and limitations of a phased
array with cavity—backed antennas.

Index term—5G; phased arrays; cavity-backed antenna;
electromagnetic modeling.

. INTRODUCTION

IN order to provide higher bandwidths for cellular services,
5G technology will (also) use frequency bands near (28 GHz)
or in (38GHz, 60GHz) millimeter-wave (mmWave)
spectrum [1]. Since propagation losses in mmWave spectrum
are higher than in the spectrum under 3 GHz (used so far, for
4G and older technologies), utilization of highly directive
antennas with beam steering is implied. Frequency range
around 28 GHz seems to be especially interesting, since
minimum of propagation loss occurs in that range [2].

Design principles for 5G antennas are yet to be established
[3]. However, for cellular handsets with metallic casing,
antennas in the form of slots in the casing are one obvious
solution [4], [5]. Namely, the metal casing would block the
signal if the antenna was inside, hence typical phased array of
patches cannot be used. In that sense, a cavity—backed antenna
[6] is a good choice for the element of the phased array. At the
time being, smartphones with 5G label have glass back panels
and, furthermore, can be delivered without mmWave 5G
antenna modules (though they have slots for this purpose).
Anyway, phased arrays with cavity—backed elements can be
naturally employed if a handset has a metal frame (if not full
metallic casing).

In this work, we implement a phased array of cavity—
backed antennas as in [4]. We adopt the same cavity size,
aimed to work in the frequency range around 28 GHz,
whereas we optimized dimensions of feeding microstrip lines.
Two models of a cellular handset with phased arrays are
discussed—one with a metallic frame, but without a cover,

Miodrag Tasi¢ — Elektrotehnicki fakultet, Univerzitet u Beogradu, Bulevar
Kralja Aleksandra 73, 11020 Beograd, Srbija (e-mail: tasic@etf.rs).

Dragan Nikoli¢ — Elektrotehni¢ki fakultet, Univerzitet u Beogradu,
Bulevar Kralja Aleksandra 73, 11020 Beograd, Srbija (e-mail:
nikolicdragansiki@gmail.com).

and the other with a metallic cover, i.e., with full metal casing.
Interiors of models are empty. In reality, the casings are
completely filled: the largest part is occupied by the battery
(and, maybe, the coil for wireless charging), then by the
camera and motherboards. More comprehensive study is
necessary to consider effects of these components, which is
beyond the scope of this work.

The geometrical and electromagnetic models of the phased
array antenna are presented in Section Il, numerical results are
presented in Section Ill, whereas conclusions are given in
Section IV.

Il. ANTENNA MODEL

Outlines of the model are shown in Fig. 1. A cavity—backed
antenna comprises a cavity excited by a stepped pin fed by a
microstrip line. There are two eight—element phased arrays
along two edges. Each cavity—backed antenna is enumerated.
A 3D view, with the dimensions, is shown in the figure inset.
The model is situated in the Cartesian coordinate system, also
shown in the figure.

Cavity is shown in Fig. 2. It is excited by a metal stepped
pin. The wider part of the pin is connected to the wall of the
cavity, whereas the narrower part is soldered to the microstrip
line. In the original design, the metal pin is nailed from
outside of the metallic frame. In electromagnetic sense, these
two models are equivalent. The pin is attached to the feeding
microstrip line, as shown in Fig. 3. The point voltage
generator is connected to the other side of the microstrip line,
between the line and the ground plane.

Dimensions, in mm, are shown in Fig. 4 (xy—plane) and in
Fig. 5 (xz—plane). Dimensions of the cavity and the stepped
pin and the parameters of the dielectrics are the same as in [4].
The relative permittivity of the dielectric in the cavities is 3,
whereas the relative permittivity and the thickness of the
microstrip line substrate are 2.2, and 0.254 mm. The boards of
the microstrip lines for different antennas are separated to
achieve better isolation between the ports. The dimensions of
the microstrip line and of all gaps around it are optimized to
achieve good balance between port’s reflection coefficients
and the coupling between the ports. Note that the structure is
sensitive in this regard, so one can expect a notable
discrepancy between simulated and measured S—parameters.

Solid 3D model of the handset frame with the cavity—
backed antennas is shown in Fig. 6. Since handset covers
commonly are not metallic (or, at least, one of them is not),
such model can be considered as an approximate model for
the handset with low permittivity dielectric covers.
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The handset with the metallic covers is shown in the Fig. 6
I\\ inset. The covers are model as infinitely thin metallic plates.
The losses in the metal and dielectrics are neglected.

Filled

3D view, dimensions in mm

Micros

ol 7 15 [ % line
% 5 13 % Steqped
H‘ 3 Phased array of 1 @ pin
% 1 cavity-backed o %
% 2 ant}iﬁ%as 10 % Fig. 3. Stepped pin fed by a microstrip line.
% 4 microstrip 12 E

feedings
ol 6 14 %
ol 16 [

X

Metallic frame |

] | |

Fig. 1. Cellular handset metallic frame with two eight-element phased arrays  Fig. 4. Dimensions of the structure in mm, xy—plane.
with cavity—backed elements.

Fig. 2. Cavity filled with dielectric material and excited by a stepped pin. ~ Fig. 5. Dimensions of the structure in mm, xz—plane. 3D views are shown in
Empty cavity is shown as an illustration of the interior. the figure insets.
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Fig. 6. Solid model of the handset frame, without the cover, with the cavities
(in yellow). Model with the metallic cover is shown in the figure inset.

I1l. NUMERICAL RESULTS

All simulations are performed using the software for
electromagnetic modeling WIPL-D [7]. S—parameters are
calculated in 21 linearly spaced frequencies from 27 GHz to
29 GHz. Radiation is calculated at 28 GHz. From a few
numerical simulations, it is concluded that losses in the metal
and the dielectric are not significant factor, so the presented
results are for the lossless materials. The ports are at the
voltage generators positions. The feeder used for microstrip
lines has low reflection coefficient, but de—embedding of S—
parameters in the plane of interest may be necessary for
ultimate precision. Simulations are performed using two
models from Fig. 6, referenced as Metal cover and No cover.

0 T 0
- -10
-20
No Cover
30 R N
S33
355
S77
-40 . L + + -40
27.0 27.5 28.0 28.5 29.0

Frequency (GHz)

Fig. 7. Magnitudes of the reflection coefficients (i.e., magnitudes of Sj;
parameters, in dB) at the ports 1, 3, 5, and 7, for the No cover model.

Magnitudes of the reflection coefficients (i.e., magnitudes
of Sjj parameters, in dB) at the ports 1, 3, 5, and 7 (as
numerated in Fig. 1), for No cover model, is shown in Fig. 7.
Since the model is symmetric along two axes (x and y), every
other port has a reflection coefficient equal to one of those in
Fig. 7. Ports 1 and 3 have similar reflection, whereas
reflection curves for ports 5 and 7 are shifted in frequency
(about 250 MHz), down, i.e., up. Furthermore, reflection at
port 1 reaches significantly lower magnitudes. The curves are
smooth, and 10 dB bandwidth is excellent (> 2 GHz).

Magnitudes of the couplings (i.e., magnitudes of Sj
parameters, in dB) between some of the ports, for No cover
model, is shown in Fig. 8. As expected, the coupling is
stronger for physically closer ports. The most critical are pairs
of adjacent ports at the end of the phased array (i.e., Sys has
the highest magnitude of all), and generally ports at the end of
the array has stronger couplings (e.g., Sz is higher than Ss;
and Sa41). The curves are smooth, as in Fig. 7.

0 . 0
No Cover I
831 S?S
10 F — 110
S5 S, T
841 S
%
-20 371 .20
.30 \ 430
‘987\
S
-40 104 -40
74 31“8 \
-50 ' -50
27.0 275 28.0 28.5 29.0
Frequency (GHz)

Fig. 8. Magnitudes of the couplings (i.e., magnitudes of Sy parameters, in dB)
between some of the ports, for the No cover model.
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Fig. 9. Magnitudes of the reflection coefficients at the port 1, comparison
between No cover and Metal cover models.
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Putting metal covers on the frame makes significant
difference. The structure becomes highly resonant, which can
be seen in comparison with the No cover models. Magnitudes
of the reflection coefficients for No cover and Metal cover
models are compared in Fig. 9 (at port 1) and Fig. 10 (at port
7). Magnitudes of the couplings between ports 1 and 2, that is,
ports 15 and 8 are compared in Fig. 11. Curves for the Metal
cover model show high oscillations, which would be even
higher if the curves were calculated in more frequency points.
Generally, the Metal cover antenna will work, but there is a
chance of misfunctioning at some frequencies.

Radiation pattern (Realized gain, in dB) when only
generator 1, or 3, is turn on is shown in Fig. 12 (xz—plane),
and Fig. 13 (yz—plane). Because of the symmetry, we can look
only antennas 1, 3, 5, and 7. They have somewhat different
radiation patterns, as illustrated for antennas 1 and 3. Maximal
realized gain for Metal cover fluctuates more, because of the
fluctuations in the reflection coefficient.

iy —m— Metal

Y2
\_/ - \ >

-10

g
= 20 +{-20
=
2]
30 | 4-30
-40 . . L . L . -40
27.0 27.5 28.0 285 29.0

Frequency (GHz)

Fig. 10. Magnitudes of the reflection coefficients at the port 7, comparison
between No cover and Metal cover models.

0 - T + . T - 0
5,1 (dB)
A n n—"—n—n—0—y_n
10 i - R "1 10
Cover s, (dB)
No
20 - —u— Metal 4-20
-30 Cover +-30
No
Metal
40 ‘ .40
-50 ' - J . ' -50
27.0 275 28.0 28.5 29.0
Frequency (GHz)
Fig. 11. Magnitudes of the couplings between some ports, comparison

between No cover and Metal cover models.

Realized gain can reach as high as 9 dB for the Metal cover
model, in the xz—plane. Maximal realized gain in the yz—plane
is about 6 dB.

Finally, we should check the beam steering capability of the
phased array. By using elementary mathematical relations for
the antenna arrays (wavelength at 28 GHz, the distance
between array elements, and the number of elements), we can
conclude that only by phase shift between currents of the
elements, we can form the beam with the angle with respect to
the axes of the array (x—axes) between 60 degrees and
90 degrees (90 degrees corresponds to zero phase shift). For
this purpose, we used the model with only one eight—element
phased array (antennas 1 to 8).

$=0, generator 1

90
10
120 =T ——=— g0
$=0, generator 3
04
104 150
-20 |
-30 180 0
-20 |
Cover:
104 —— No
210 —— Metal 330
D -
104 (b) 240 — 300
270

Fig. 12. Radiation pattern (Realized gain, in dB) in the xz—plane (¢ =0
degrees); comparison between No cover and Metal cover models, when only
generator: (a) 1 and (b) 3 is turned on.
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Second phased array (antennas 9 to 16) was removed from
the model. Technically, by removing the second array, we
obtain a different model. However, numerical results show
that, for the No cover model, results for radiation patterns of
these two models are very similar.

Hence, using the No cover model with the second array
removed, we applied only uniform phase shifts to antenna
generators, in order to obtain angles (with respect to the x—
axes) of 90 degrees (no phase shift), 75 degrees, 60 degrees,
and 45 degrees. The results for 3D radiation patterns
(Realized gain, in dB) are shown in Figs. 14 to 17 (the frame
of the handset, shown in the figures, is represented with a
mesh of quadrilateral patches).

90
10 4 Bt Bk
120 60

-10 4

20

-30 4 180

-20

10 (@)
270

90

120

T
$=90, generator 3 60

40l 180

-20 -

-30 -4 180

-20 -

~10+ 210 330

10l ()

270

Fig. 13. Radiation pattern (Realized gain, in dB) in the yz-plane (¢ =90
degrees); comparison between No cover and Metal cover models, when only
generator: (a) 1 and (b) 3 is turned on.

We can see that such setup works correctly for 90 degrees
(Fig. 14, maximal realized gain 15.33dB), 75 degrees
(Fig. 15, maximal realized gain 15.89 dB), and 60 degrees
(Fig. 16, maximal realized gain 15.47 dB). However, as
expected, directivity of the radiation pattern significantly
decreases for 45 degrees (which is outside the expected range
from 60 degrees to 90 degrees). At this angle, the phased array
factor “catches” maximums in two directions (45 degrees is
one of them), so the resulting radiation pattern is less
directive, and the maximal realized gain is only 9.08 dB
(Fig. 17). Technically, for larger scanning range, the smaller
distance between array elements (cavities) is needed.
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Fig. 14. 3D Radiation pattern (Realized gain, in dB) of the No cover model,
phase shift adjusted for 90 degrees angle from the horizontal axes.
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Fig. 15. 3D Radiation pattern (Realized gain, in dB) of the No cover model;
phase shift adjusted for 75 degrees angle from the horizontal axes.
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IV. CONCLUSIONS

Numerical simulations show that phased arrays of cavity—

backed antennas, in the frequency range around 28 GHz, can
be successfully integrated into the metal frame of a cellular
handset. If the frame is not covered with metallic plates, the
phased array works correctly, within expectations, with large
impedance bandwidth and good radiation pattern. However,
the key advantage of the cavity—backed antennas is their
potential usage in the handsets with fully metallic casing (of
course, with slots for camera lenses). By covering the handset
frame with the metal plates, S—parameters degrade, with
moderate to high oscillations in the frequency range of
interest (27 GHz to 29 GHz). These oscillations can result in
reduced realized gain and high coupling between antennas,
which could cause misfunctioning of the antenna system.
Investigated solution has rather small scanning range (for both
frame and full metal model), which can be improved by using
smaller distance between cavity—backed antennas (and,
consequently, smaller cavities). Position of the phased array
should be reconsidered.

Fig. 16. 3D Radiation pattern (Realized gain, in dB) of the No cover model;

phase shift adjusted for 60 degrees angle from the horizontal axes.
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Fig. 17. 3D Radiation pattern (Realized gain, in dB) of No cover model;

phase shift adjusted for 45 degrees angle from the horizontal axes.
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Simulation of Wideband Bandpass Filters with
Arbitrary Relative Bandwidth

Dusan Nesi¢, Member, IEEE, Branko Kolundzija, IEEE Fellow and Tomislav MiloSevi¢

Abstract - Algorithm for the realization of the wide relative
bandwidth (RBW) bandpass filters is introduced. Algorithm is
based on periodic ideal waveguide cells each with short-ended
stub. Design curve of the ratio between characteristic
impendence of the short-ended stub and the characteristic
impendences of the main lines is given for the broad range of
values of RBW.

Index Terms - Microwaves, Wide bandpass filter, Specified
relative bandwidth, microstrip.

I. INTRODUCTION

WIDE bandpass filters are important part of microwave
systems [1-4]. Many of them are for unlicensed ultrawideband
communications spectrum from 3.1 GHz to 10.6 GHz with
relative bandwidth (RBW) of 106 % [1,4]. Another are
customized for wider or somethig narrower RWBs. All of
them are assumed to suppress DC and lower frequencies. It
can be done using coupling and short-ended stubs [1-4] or
only short-ended stubs [5-9]. Majority of them are done in
microstrip technology, the most use planar technology in
microwave systems. Some of them are also using defected
ground structure (DGS), coupling or multilayers [1,4].
General problem is that there is no specific algorithm
procedure for the broad range of values of RBW.

This paper introduces algorithm for the broad range
of values of RBW up to 1.6 using only short-ended stubs. The
structure is without coupling and without defected ground
structure (DGS). Fabrication technology is the single layer
microstrip. The procedure is tested on the fabricated filter for
RBW 150 %.

Il. ALGORITHM

Considered general structure of the ideal lossless unit cell is
shown in Fig. 1. It is something similar to the cell for low-
pass filter with open-ended shunt network in [10]. The shunt
network in this paper is short-ended. All cell networks are
described, as in [10], in the form of ABCD matrix. The cell
consists of three networks: two networks (N1 and N2) are
cascaded and one network is shunted and short-ended (N3).
Network N2 is the same as N1 except that the roles of its ports
are reversed, sothat A =D, B;=B, C;=C and D;=A.

Dusan Nesi¢ is with Centre of Microelectronic Technologies, Institute of
Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva
12, 11000 Belgrade, Serbia (mail: nesicad@nanosys.ihtm.bg.ac.rs).

Branko Kolundzija is with the School of Electrical Engineering,
University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade,
Serbia (e-mail: kol@ etf.rs).

Tomislav Milosevi¢ is with WIPL-D d.o.0., Gandijeva 7, 11073 Belgrade,
Serbia, (E-mail: tomislav.milosevic@wipl-d.com).

Effectively, two identical networks of ABCD-parameters A,
B, C, and D is cascaded back to back at port ® with the shunt
network of ABCD-parameters A, B, Cs, and Ds, whose other
port is short-ended. In fact it is one T-junction.

[AS BS} N3

C, D

NI ‘ ;/U@) N2
al* flle & @ s B‘__é
Alllc D 7(] Dl,_o

Fig. 1. Scheme of a filter cell with ABCD matrix.

Presentation of the developed matrix of the cell in Fig. 1.
Matrix of N1 (ABCD) and N2 (DBCA) are presented in (1)
and matrix of shunt short-ended network N3 (AsBsCsDs) is
developed in (2).

A B] _cosH jZsing d_D B
C D| Jsing  coso | " C A
Z h (@)
cos 6 jZ4siné,
B X S S S
A Bs|_ gy )
C, D, 7 sing,  cos 6,
S - )

The shunt short-ended network N3 acts as a shunt
admittance Y = D¢/Bs at port ® (3).

L o] L0
Y 1| | B
) @)
Matrix of the completed cell (A.B.C.D.) is presented in (4)

[A Bc}_{A B} [}S 0 {D B}_
[Cc Do) [€ BJ|gg lc A

AD+BC+25BD  2aB+ D52
Bs Bs
4
20+ 2502  apsBcsPspp|@
Bs Bs

In an infinite cascade of identical unit cells the wave
propagates along the structure only if |(AC + Dc)/2| <1 [11],

which implies existence of pass bands of the structure. After
arranging matrix with reciprocity AD = BC+1 (5).
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D,BD

<1l O0<2AD+ D,BD <2
B, B, (5)

Take attention on B/Bs. After incorporating values for
ABCD parameters from (1) and (2), equation (5) becomes

-1<AD+BC+

Z sin(0) <9

0 < 2cos()? + cos(8. ) cos(& <
@) (65)cos( )ZS Sin@)

(6)

To eliminate changing the sign of sin(é) and make easier
for realization it is chosen to be 9= &.

—1<-1+2cos(0)? +cos(0)ZZ£ <1 7)
S
Diagram of (7) in Fig. 3 is done for an arbitrary ratio Z / Z.
Relation (7) has a period 7 and is presented in the phase range
from 0 to w. The result of the relation (7) is in the range
between -1 and +1 and corresponds to the bandpass region.

[2]
(%]
3]
o
ie)
c
4]
Ke)
(]
o
(]
=
@
>
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Re)
g
=1 0.5 0
]
-1
0.0 0.5 1.0 15 2.0 2.5 3.0
0 [rad]

Fig. 3. Value of (A; + D) / 2 inside bandpass vs. 6.

As can be seen in Fig. 3, center of the bandpass region
logically corresponds to €6, = n/2. Boundaries of the bandpass
are signed with 4., for the lower frequency and é., for the
higher frequency. According to the mentioned one can
calculate useful bandpass filter charasteristics. In the case &, =
0 relation between boundaries is 6, = n - 6,1 and &, will be
replace in equations simply with 6. Relative bandwidth
(RBW) of the bandpass is

RBW =1‘9°2;9°1zz—i@d:z—i@C (8)
5(901+602) 4 d
o, = 2-RBW _ ©)

4

For RWB = 2 value of 4. becomes 0 and Z; / Z is
approaching infinity. For other values of RWB the boundary
condition for (7) becomes

—1+2c0s(6,)? +cos(6,)? ZA =1
) (10)

(1)
(12)

Z
+-=219°(@,)

S

For the given RBW one can calculate boundary &, from (9)
and next calculate Z / Z; from (12).

As can be seen from (9) maximum RBW is 2 and according
to Fig.4 very high RBW needs huge ratio between Z; and Z
and it is not realizable. The same is valid for the narrow RBW.
Realizable RBW in microstrip technology is good for a
wideband bandpass filter below RBW = 1.6. Ratio Z, / Z >1
corresponds to relatively narrow stub microstrip line and is
easier for realization of T-junction close to ideal.

I1l. APPLICATION

For the filter formed by cascade of identical unit cells it is
important to match nominal impendence of ports (commonly
Zy = 50 Q) as much as possible. It was done matching Bloch
impendence to the nominal impendence Z,.

Zo=2p = E—C
¢ (13)
And gives
B = Z
cotd 2
C0s 1—( J
cot 6¢ (14)

As can be seen Bloch impendence is equal to Z / cos(6,) for
the center of the band-pass filter (6=n/2). It means that Z in
the simulation process has the start value of Z = Z, cos (6;)
and need to be optimized for the whole band-pass.
Dependence of Z and Zsvs. RBW for Bloch impendence of 50
Q is presented in Fig. 4.

140

120 4

100 4

804

z,z_[o)

603

40 J e

20

1.0 11 12 13 14 15

Fig. 4. Dependence of Z and Z;vs. RBW Bloch impendence of 50 Q.
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Using previously developed equations 4-cells filters are
simulated for RBW = 1.5 (150%), 1.33 (133%) and 1.0
(100%) around central frequency of 3 GHz. Ideal model in
WIPL-D Microwave Pro v5.1 [12] is presented in Fig. 5. for 4
identical cells with correspondence between /2 and (4 / 4).

2—-RBW
=7

A 2

Zi =2t9%(4,) Z=Z,cos(6;) (15a,b,c)

S

Simulated results for 4 identical cells are presented in Fig.
6a and 6b. As can be seen, S;; parameters are better for the
wider band-stop-filters. Logically, using Bloch calculation
(15c), Si; parameters are totally matched only for the central
frequency (3 GHz in Fig.6.) and much higher on the
boundaries. Optimization is in direction of equalizing
maximums of the S;; parameters in the whole band-pass
region. In order to do that impendence Z calculated in (15c)
need to be something lower. Optimized results are for the case
with equal values of Sy; for the 1%, 6™, 3" and 4™ maximums
in the bandpass. New optimized results are presented in Fig.
7a and 7b. Steepness of the filter is better for more cells but
problem is dimensions. One cell longitudinal dimension is 1/2.
4-cells filter is chosen as optimal and for -3 dB criteria RBW
is shifted only 3%.

0 0 oo [ |
$ 4 b 4
[Teo & L |-e o \$‘ L o ®

Fig. 5. Ideal model of a 4-cells filter with identical cells.
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Fig. 6a,b Three wideband filters in the ideal model of 4 cells according to
Bloch impedance (15c).
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Fig. 7a,b Three wideband filters in the ideal model of 4 cells with
something lower Z.

IV. CONCLUSION

This paper presents algorithm for the broad range of values
of wide relative bandwidth (RBW) up to 1.6. The algorithm is
based on periodic ideal waveguide cells each with short-ended
stub. Design curve of the ratio between characteristic
impendences of the short-ended stub and characteristic
impendences of the main lines is given for the broad range of
values of RBW. Characteristic impendences are at first
calculated according to the Bloch impedance and then slightly
optimized for the optimal S;; parameters in the whole
bandpass region.

Very high RBW needs huge ratio between Zs and Z and it is
not realizable. Along with microstrip the algorithm can be
also applied to stripline and coplanar waveguide (CPW).
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Numericko racunanje konacnog dela Zomerteldovih
integrala u blizini razdvojne povrsi vazduha 1
metamaterijala negativne permitivnosti

Nikola Basta i Branko Kolundzija, Fellow, IEEE

Apstrakt—PredloZen je numericki pristup reSavanju konacnog
dela Zomerfeldovog integrala koji odgovara rasejanom potenci-
jalu vertikalnog Hercovog dipola u okolini spoja dve linearne
sredine — vazduha i metamaterijala negativne permitivnosti.
Integral je racunat duZ realne putanje integracije primenom
Gaus-Lezandrove kvadraturne formule. U analitickoj pripremi
integrala, primenom smene promenljivih i ekstrakcije singulari-
teta, poniSten je singularni uticaj tacaka grananja i pola podin-
tegralne funkcije, respektivno. PredloZen pristup verifikovan je
numerickim primerima i poredenjem sa drugom metodom.

Kljuéne re¢i—Zomerfeldovi integrali; poniStavanje singulari-
teta; pol; tacka grananja; smena promenljivih;

I. UvoDp

ANALIZA izvora elektromagnetskog zraenja u prisustvu
dve linearne sredine (eng. half-space problem), predstavlja
klasu problema koja se istrazuje ve¢ vise od jednog veka [1],
[2]. ReSavanje ovakvog problema pociva na tzv. Zomerfeldo-
vim integralima (ZI) [1]. S obzirom na danasnju potrebu za
taCnijim i efikasnijim metodama elektromagnetske analize koje
bi omogucdile analizu elektricki velikih struktura na Sirokom
opsegu ucestanosti, ZI su i dalje aktuelni, §to potvrduju brojne
publikacije poslednjih godina, kao §to su [3]-[5]. Osnovni
izazovi u numeric¢koj proceni ZI jesu njihova oscilatornost,
singularnost i polubeskonacni interval integracije [1], [2], [6].
U ovom radu, posveéujemo paZznju kona¢nom delu ZI [7],
odnosno metodama za prevazilaZenje singulariteta, tj. pola i
tacaka grananja, koji se nalaze na ili blizu putanje integra-
cije [7], [8]. Pol i tacke grananja mogu znacajno uticati na
tacnost numericke integracije. Njihovo postojanje i karakter su
direktno uslovljeni elektri¢nim osobinama dveju razmatranih
sredina.

U dosada$njim istraZivanjima, u tipi¢nim scenarijima, raz-
matrani su tzv. desno orijentisani materijali, u kojima za
ekvivalentnu permitivnost i permeabilnost vazi Re{e.} > 0
i Re{pe} > 0. To je sludaj i u analizi antene u vazduhu, nepo-
sredno iznad realnog zemljista [1], [2], [6]. Medutim, u savre-
menim primenama, kao $to je interakcija plazme ili odredenih
metala sa elektromagnetskim poljem visoke ucestanosti, moze
se desiti da realni deo ekvivalentne permitivnosti postane
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negativan [9], [10]. Sa druge strane, specijalni feritni ma-
terijali u kombinaciji sa metalnim strukturama ili stranim
magnetskim poljem mogu se konstruisati tako da je njihova
ekvivalentna permeabilnost negativna [11]-[13]. Ovi efekti
su od velikog znaCaja za oblast fizike koja se bavi opto-
elektronskim komponentama, bio-senzorima, socivima, kao i
formiranjem slike (eng. imaging) na nanoskali [14]. lako je za
postizanje Zeljenog efekta potreban izvor elektromagnetskog
polja ¢ija radna ucestanost je bliska opti¢kim, specijalnim
periodi¢nim mikrostrukturama, izradenim od odgovarajucih
elemenata, moZe se formirati veStacki materijal kod kojeg
se isti efekat postiZe na ucestanostima znacajno niZim od
opti¢kih, reda veli¢ine teraherca i gigaherca [10], [14]-[18].
Takvi materijali se nazivaju metamaterijalima 1 poslednjih
decenija posveéena im je velika paznja, o cemu svedoci veliki
broj publikacija [14]. U ovom radu, razmotri¢emo primer ma-
terijala sa negativnom permitivno$éu (ENG — eng. e-negative)
kao jednu od dve linearne sredine u ¢ijoj blizini se nalazi
izvor zraenja. Medutim, prikazana saznanja se odnose i na
materijale sa negativnom permeabilnoscu (eng. p-negative) i
tzv. dvostruko negativne materijale (eng. double negative), kod
kojih je Re{ee} < 01 Re{ue} < 0.

Makroskopski gledano, postojece modele koji opisuju zavi-
snost permitivnosti nekog veStackog materijala od u€estanosti
(npr. Drudov ili Lorencov model [15], [19]) moZemo direktno
uvrstiti u Maksvelove jednacine. U scenariju sa dve line-
arne nemagnetske sredine, od kojih je prva vazduh, a druga
ENG metamaterijal, tj. metal u kojem je za datu ucestanost
Re{e.} < 0, u podintegralnoj funkciji ZI se pojavljuju sin-
gulariteti — tacke grananja i pol. Cilj ovog rada jeste analiza
singulariteta, odnosno razvoj metode za potiskivanje njihovog
uticaja radi efikasnog numerickog racunanja kona¢nog dela ZI
s visokom ta¢noscu.

II. POSTAVKA PROBLEMA

U scenariju prikazanom na sl. 1, izvor (tacka A) je vertikalni
Hercov dipol (VHD), koji se nalazi na z-osi, na visini z’ iznad
ravni koja predstavlja razdvojnu povrS vazduha (sredina 1) i
ENG metamaterijala (sredina 2). Na istoj visini, na horizon-
talnom rastojanju p, nalazi se tacka u kojoj posmatramo polje,
P. Problem ¢emo dalje razmatrati na primeru reflektovanog
Z1, tj. integralnoj predstavi rasejanog potencijala VHD,

b
_ 21112 Kpdk
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gde je R.. generalisani koeficijent refleksije, Jy Beselova
/1.2 2 _
ki — kg, ko =
wy/€opto. U razmatranom slucaju je €; = €y, €2 = €,
W1 = Ho = Wo, te se generalisani koeficijent refleksije moze
izraziti kao

2 2
_ Npeo(ky) _ ¥ VR =k = kR - R
Dres(ho) k2, k2 — k3 + 13 k2 — b2

gde Np,. i Dpg,, predstavljaju brojilac i imenilac, k =
wy/€cpto. U izrazima R, i 7,0 uofavamo taCke grananja
korenih funkcija, k, = ko i k, = k, koje prouzrokuju
beskonacne vrednosti integranda, odnosno njegovih izvoda.
Integracija se vrsi po realnoj osi, a gornja granica integrala,
b, je odabrana tako da je dovoljno daleko od tacaka grananja
(i eventualnog pola), b > max{ko, Re{k}}. Napominjemo da
u ovom radu razmatramo konacan deo ZI, te je b < +oo.
Od posebnog interesa je kritiCan slucaj, kada su singulariteti
blizu putanje integracije, tj. kada jedna od sredina ima male
gubitke [7]. Iz tog razloga usvajamo za sredinu 2 metamaterijal
ENG tipa, ¢ija je ekvivalentna permitivnost €, = €p€cr, gde je
€er = —4 —j0,01.

funkcija prve vrste i nultog reda, 7,9 =

R (kp)

@)

Az

€1 = €0, U1 = MO

A(0,2") =< —* P(p,z=2")
o) \‘\\ //’/ Vazduh (1)
ENG Metamaterijal (2) p
€2 = €e, U2 = MO
SI. 1. Scenario sa razdvojnom povrsi vazduha i ENG metamaterijala. Izvor

se nalazi u tacki A, a tacka posmatranja je P.

ITI. POTISKIVANJE SINGULARNOG UTICAJA TACAKA
GRANANJA PRIMENOM SMENE PROMENLJIVIH

Za numericko raCunanje integrala (1) sa prihvatljivom
tacnoS¢u, neohodno je potisnuti uticaj singulariteta. Singularni
uticaj taaka grananja moZe se potisnuti primenom smene
promenljivih [7], [8]. Radi poveéanja efikasnosti, pre primene
smene, domen integracije moZemo podeliti na poddomene,
a singularne tacke grananja, odnosno njihove projekcije na
realnu osu, ko i ke = Re{k}, predstavljaju pogodno me-
sto za granice novih poddomena [7]. Dodatnu granicu, koja
omogucava nezavisno tretiranje dve tacke grananja, definiSemo
kao aritmeticku sredinu dveju prvobitnih granica, kao Sto je
prikazano na sl. 2. Na taj nacin imamo cetiri poddomena, a
time i Cetiri odredena integrala, ¢ije vrednosti treba proceniti.
Sledi da ZI nad konacnim intervalom moZemo izraziti kao
L ,.(0,0) = I + Io + I3 + 14, gde je
kO + kre
)

5k0)7 I4 = Ir,zz(k()vb)a

Il = Ir,zz(oa kre); 12 = Ir,zz (krea

kO + kre
2

I3 = Ir,zz< (3)

a gornja granica iznosi b = ko2 [71, [20].
Radi transformacije integrala u oblik pogodniji za nu-
meri¢ko racunanje, definiSemo smene promenljivih [7],

s=\[k2—k2=k,=Vs2+k?, zaliily, 4

s=\/k2—k§ =k, =/s>+k§, zalzily, (5

gde za obe smene vaZi k,dk, = sds. Na ovaj nacin, potiskuje
se singularni uticaj tataka grananja, kao Sto e biti pokazano
u odeljku V. Putanje integracije nakon smene prikazane su u
kompleksnoj s-ravni na sl. 3.

Im{k
tky Zakrivljena putanja
kp-ravan

.....

kO + kre kO :
5 X

kp,pol

Realna putanja

SI. 2. Prikaz realne putanje (siva linija) i zakrivljene putanje (crna linija) u
kompleksnoj k,-ravni za Re{eer} < 01 Im{eer} < 0. Projekcije talasnih
brojeva na realnu osu i njihova aritmeticka sredina predstavljaju granice
poddomena. Usled negativnog realnog dela permitivnosti, pol se pojavljuje
u blizini realne ose sa kriticne desne strane u odnosu na kq.

S-ravan

Re{s}

: fro 12
k;pol B kgx b ko

S1. 3. Putanje integracije (sive linije) i singulariteti predstavljeni u preslikanoj,
kompleksnoj s-ravni.

IV. EKSTRAKCIJA POLA PODINTEGRALNE FUNKCIJE

Na spoju vazduha i ENG metamaterijala, moze se javiti
posebna vrsta talasa u vidu povrSinskog plazmon-polaritona
(SPP - eng. surface plasmon polariton). Fenomen SPP nastaje
usled sprege oscilatornog EM polja i slobodnih nosilaca u
metalu. Uslov za njegovo pojavljivanje na razdvojnoj povrsi

sredina 1 1 2 glasi [14]
Re{€e1} Re{eea} <0, Re{€e1} + Re{eea} <0, (6)

gde je, u odnosu na [14], ovde iskaz uslova uopSten i izraZen
preko realnih delova ekvivalentnih permitivnosti, kako bi se u
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racun ukljucio i slu€aj sa gubicima. Za slu€aj malih gubitaka,
koji je u ovom radu razmatran, SPP se u literaturi naziva i
Fanoov mod [3]. Pojava tzv. povrSinskog talasa je direktno
povezana sa poloZajem pola podintegralne funkcije u kom-
pleksnoj ravni (videti Dodatak). Pol u slu¢aju naseg integranda
predstavlja nulu imenioca generalisanog koeficijenta refleksije.
ReSavanjem jednacine

Dree(ky) = K\~ B+ 13\ [z~ k2 =0, ()

dobija se k, = £k, pol, gde je

k2k? €or
bora =\ e ®

Za odabrano €., reSenje jednacine Dp,, = 0, dato izrazom
(8), iznosi kp por = ko(1,1547—30,0005). Ovaj broj se nalazi u
IV kvadrantu kompleksne k,-ravni (pozitivan predznak reSenja
jednacine Dpg., = 0), desno od tacke grananja ky u nepo-
srednoj blizini realne ose, odnosno realne putanje integracije
(sl. 2). Takav pol nepovoljno utiCe na ta¢nost i konvergenciju
numerickog raCunanja integrala i povezuje se sa pojavom
povrsinskog talasa SSP tipa (videti Dodatak).

Primenom smene, pol se u kompleksnoj s-ravni preslikava

U Spol \/k:i,pol—k:g ~ ko(0,5773 — j0,0010), Sto je
takode u IV kvadrantu i blizu realne ose. Kako u s-ravni
domen integracije integrala I, ide duZ realne ose (sl. 3),
zakljuCujemo da i u domenu nove promenljive, preslikani
pol ugroZava tacnost i konvergenciju integrala. KoriSéenjem
tehnike ekstrakcije singulariteta, oduzimanjem i dodavanjem
pogodnog singularnog izraza, Ciji integral je analiticki reSiv
[21], [22], integral I, .. se nakon primenjene smene moZe
izraziti u obliku

S2
Ir,zz :/ fr,zz(s)dS
S92 R o
= / <fr,zz(5> - L) ds + IR,eS; (9)
S1 $ = Spol

gde je f;..(s) podintegralna funkcija integrala I, .. nakon
smene, a R, njen ostatak u tacki s = spol,

Rpoi = Res fiz:(s) = lm (s — spol) fr,22(5).

S$=Spol S*}Spol

(10)

Veli¢ina IRes se racuna analiticki integraljenjem oduzetog
izraza

S2 R
1 51 — Spol
TRes = / PO (s = Rpol {m@
s1

S — Spol |52 - 5pol|
+j(arg{s2 — spor} —arg{s1 — spol})] . (1D

Ovakvom analitickom pripremom, uticaj pola podintegralne
funkcije je potisnut i moZemo pristupiti numerickoj integraciji.

V. NUMERICKI PRIMERI

Radi provere efikasnosti smene promenljivih i ekstrakcije
pola u sadejstvu, posmatran integral I, . je razmatran za z =
Z'=01p/A € {1,10,100}. Ovaj skup slucajeva je odabran,

jer se nultim vertikalnim rastojanjem ukida prigusenje anve-
lope usled eksponencijalnog faktora u podintegralnoj funkciji,
te je otklonjena moguénost da se dejstvo pola potre malim
vrednostima funkcije prouzrokovanih priguS$enjem. Takode,
bliskost izvora zraenja razdvojnoj povrSi odgovara velikom
broju primera iz prakse, kao $to su radio i geo-radarski
predajnici neposredno iznad zemlje.

Za date slucajeve, relativna greska u funkciji potrebnog
broja integracionih taaka n,, prikazana je na sl. 4-6. Integral
je racunat na tri nacina - duZ sinusne zakrivljene putanje (sl.
2) i duZ realne putanje sa i bez ekstrakcije pola. Referentna
zakrivljena putanja sinusnog oblika je zadata prema [20], gde
je istaknuta zavisnost visine putanje od horizontalnog rasto-
janja p. Ovakva adaptivna putanja se pokazala superiornom
u pogledu tacnosti u odnosu na ostale kanoni¢ne putanje iz
literature koje su definisane fiksnim parametrima.

10°

100 |

) R Sinusna [20]
1072 +

Realna

o
10-10 L o Realna ,

sa ekstrakcijom

\..,‘,,:i\w%w‘mw il
I

1070 ¢

1072 ‘
10° 10" 102 10° 10*

g
Sl. 4. Poredenje relativne greSke raCunanja integrala I .. pomocu sinusne

putanje [20], realne putanje bez ekstrakcije pola i realne putanje sa ekstrak-
cijom polaza p=Xg iz =2 =0.

10°
10° ]
" -\A\A\.
107"+ * 1
\A
\.
\.
“010 10 ‘l\- -
. \
R Sinusna [20] A
\
iy
10-15 Realna pren .
_e_Realna
- sa ekstrakcijom
10° 10 10? 10° 10*

S1. 5. Poredenje relativne greske racunanja integrala Ir .. pomocu sinusne
putanje [20], realne putanje bez ekstrakcije pola i realne putanje sa ekstrak-
cijom polaza p=10Xg i z =2’ = 0.
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Sl. 6. Poredenje relativne greske racunanja integrala Ir .. pomocu sinusne
putanje [20], realne putanje bez ekstrakcije pola i realne putanje sa ekstrak-
cijom pola za p = 100X\g i z = 2/ = 0.

Posmatrajuéi krivu greSke za realnu putanju kada je prime-
njena samo smena promenljivih, vidimo da je pol dovoljno
blizu putanje integracije, te prouzrokuje gresku reda veli¢ine
0 ~ 0,1 + 10. Smena promenljivih u kombinaciji sa ekstrak-
cijom uspeSno potiskuje dejstva tataka grananja i pola, pa je
dostignuta tacnost visoka. Integracija zakrivljenom sinusnom
putanjom rezultuje nivoima greske koji su prihvatljivi za malo
p. te se moZe pretpostaviti da je sinusna putanja dovoljno
udaljena od pola. Medutim, dejstvo singularne tacke grananja
k, = ko, a time i velikih vrednosti Beselove funkcije komplek-
snog argumenta u I kvadrantu, je i dalje vidljivo. Osetljivost
integracije duZ zakrivljene putanje dolazi do izraZaja narocito
za vece p (sl. 6). S obzirom na vecu robusnost sa aspekta
horizontalnog rastojanja i lakocu implementacije esktrakcije
pola, u datom scenariju se predloZena metoda sa korenom sme-
nom promenljivih i realnom putanjom pokazuje kao pogodniji
pristup.

V1. ZAKLJUCAK

Realna putanja integracije i Gaus-LeZandrova kvadraturna
formula primenjeni su u numerickom racunanju Zomerfel-
dovog integrala za rasejani potencijal vertikalnog Hercovog
dipola na spoju vazduha i metamaterijala negativne permitiv-
nosti. Singularni uticaj tataka grananja potisnut je primenom
smene promenljivih, dok je pol uklonjen primenom tehnike
ekstrakcije singulariteta nakon uvrS¢ivanja smene. Na ovaj
nacin omogucéeno je efikasno racunanje integrala sa visokom
tatnoS$¢u. U poredenju sa metodama sa zakrivljenom puta-
njom integracije, predloZeni pristup omogucava viSu tacnost
u Sirokom opsegu horizontalnih rastojanja izvora i tacke po-
smatranja.

DODATAK
U zavisnosti od osobina dve linearne sredine, na njihovoj
razdvojnoj povrsi moZe doc¢i do pojave nekog od razlicitih
oblika povrSinskog elektromagnetskog talasa, koji u manjoj

ili ve¢oj meri doprinosi ukupnom talasu. Pojava povrSinskog
talasa je usko povezana sa polovima podintegralne funkcije
Zomerfeldovog integrala pomoc¢u kojeg izrazavamo EM polje.
U ovom dodatku, na primeru reflektovanog Zomerfeldovih
integrala, analiziraéemo uslov za postojanje polova i njihov
singularni uticaj na numeric¢ko raunanje integrala.

Izjedna¢imo sa nulom imenilac generalisanog koeficijenta
refleksije za vertikalni Hercov dipol na razdvojnoj povrsi dve
linearne nemagnetske sredine (1 = pua = po),

Dr.. = ki\/k2 — k3 + ki \/k2 — k3 =0,

gde su k; i ko talasni brojevi prve i druge sredine. Tada
kaZemo da je ispunjen tzv. uslov rezonancije. Pravolinijskim
reSavanjem jednacine (12), prebacivanjem na drugu stranu jed-
nakosti, kvadriranjem i odredivanjem reSenja po k,, dobijamo
izraz za pol!

12)

ko = £k, pol, (13)

kp,pol =

Medutim, kako se kvadriranjem gubi informacija o izboru
grana u korenim funkcijama, nije jasno pod kojim uslovima
takvo reSenje jednaCine zaista postoji i u kakvoj su svezi ti
uslovi sa svojstvima dveju sredina. Da bismo to razjasnili,
pomenutu jednacinu reSi¢emo postupno, sa osvrtom na izbor
grana. Radi jednostavnosti, razmatrademo slucaj kada su % i
k2 u IV kvadrantu k,-ravni, $to odgovara tipi¢nim sredinama
sa gubicima. Neka su argumenti kompleksnih veli¢ina k? i k2
dati uglovima ¢, i ¢2, (|¢2| > |¢p1]), respektivno, i neka je
arg{k? + k3} = ¢, kao na sl. 7. Zaseci su prikazani talasastim
linijama, a njihov oblik odgovara hiperbolama, definisanim
k%Q — k2
talasni broj u pravcu z-ose. Ovakav odabir zaseka koriscen
je u originalnom Zomerfeldovom radu [1]. Imenilac u okolini

jednaCinama Im{k,1 2} = 0, gde je k12 =

Im{k, }
& k,-ravan
2 »
0 k1 Re{k,}
o2
2
k2

S1. 7. Tacke grananja i zaseci podintegralne funkcije za slu¢aj dve sredine sa
gubicima, ¢iji talasni brojevi su k1 i ko. Talasaste linije predstavljaju zaseke
odgovarajuéih korenih funkcija.

10vaj izraz jeste pol kada je Im{k,1} < 01 Im{k,2} < 0, $to odgovara
prvoj, regularnoj grani funkcija k.1 i k2. Drugacijim odabirom grana, dati
izraz postaje nula brojioca. Ovo se postiZe u tzv. neregularnoj grani, ondnosno
neregularnom listu Rimanove povrsi (eng. improper Riemann sheet), i tada se
dati izraz zove Brusterova nula [23], [24].
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pola postaje

DRzz(kp,pol) = k% ki,pol

— kI + ki /K2 k?

p,pol

T el ST e
VR R K+ k2
> (14)
— |k2|2ej¢zL ol (T+2¢1—9)
ki + k3|
2
PPN L /)

VIES + k3|

Da bi izraz (14) bio jednak nuli, potrebno je da dva sa-
birka nakon korenovanja eksponencijalnih faktora dobiju su-
protne predznake. To je moguce samo ako podkorene veli¢ine
el (T+201-¢) § el(7+2¢2=¢) imaju imaginarne delove suprotnih
predznaka, tj. ako je

(201 — ¢)(2¢2 — ¢) < 0.

Drugim re¢ima, opseg ugla ¢ je odreden sa 2|¢1| < |§| <
2|p2|, odakle sledi potreban uslov za postojanje pola

|p2| > 2|1

Tako je ovaj uslov Cesto ispunjen u praksi, samo postojanje
pola ne znaci nuzno i da on utie na numeri¢ku integraciju.
Pokazuje se da uticaj pola, pored njegove udaljenosti od
putanje integracije, zavisi i od njegovog relativnog poloZaja
u odnosu na tacke grananja, $to ¢emo ilustrovati primerom.
Resenje za pol integranda moZemo izraziti na slede¢i nacin:

K k2
kool = k1) —— =2,
p,pol Witre K k2

Neka je, za svrhe naSeg primera, sredina 1 bez gubitaka,
Re{k1} > 0 A Im{ki} = 0, a sredina 2 sa gubicima,
Im{ko} < 0. Tada se hiperboli¢ni zasek koji odgovara tacki
grananja kj (sl. 7) deformiSe u dva pravolinijska segmenta,
kao na sl. 8. Ako definiSemo uglove o i 3

5)

(16)

a7)

K= |k, —1<a<0,
1+r=|14+kld? a<p<o,

sledi da je [3], [25]

(18)

19)

Posmatrajmo najpre slu¢aj kada je Re{x} > 0. Tada je
—7/2 < a < 01i pol se nalazi u IV kvadrantu, levo od ki, tj.
Re{k,poi} < Re{k:i}. Ukoliko usvojimo putanju integracije
duz realne ose i pretpostavimo male gubitke u sredini 2, Cini se
da bi blizina pola putanji integracije mogla znacajno umanjiti
tacnost rezultata usled velikih vrednosti integranda (sl. 8a).
Medutim, s obzirom da se realna putanja integracije nalazi
u prvoj, regularnoj grani funkcije k. (eng. proper Riemann
sheet), neposredno iznad zaseka, a da se pol nalazi ispod
njega, izbegnut je njegov singularni efekat. To se objasnjava
time da se putanja integracije i pol ne nalaze istovremeno u
zoni gde je potiranje sabiraka imenioca (14) moguée. Ako
je pak Re{x} < 0, tj. —7 < a < —7/2 (npr. plazma,
metamaterijali i odredeni metali na visokim ucestanostima),

onda se pol nalazi desno od tacke grananja kj, i to u zoni
gde svojom blizinom realnoj osi moZe prouzrokovati velike
vrednosti integranda na putanji integracije, a time i umanjenje
ta¢nosti numeri¢kog racunanja integrala. Pojava pola desno od
taCke grananja povezuje se sa pojavim jedne vrste povrSinskog
talasa, kojeg nazivamo povrsinski plazmon-polariton (SPP -
eng. surface plasmon polariton) [3], [24], [25].

Im{k,}
k,-ravan
0 % Re{k, }
kp,pol ko
(@)
Im{k, }
k,-ravan
0 kl H k
« X Re{k,}
kpypol
k2

(®)

S1. 8. Relativni poloZaj pola u odnosu na tacke grananja kada je sredina 2
(a) dielektrik s gubicima i (b) metamaterijal sa Re{k2} < 0.

Na sl. 9 prikazan je grafik modula integranda ZI za rasejani
potencijal vertikalnog Hercovog dipola u funkciji k,, kada je
p =10\ i z = 2’ = 0. Crna linija predstavlja grafik modula
integranda duz realne ose. U datom primeru je k1 = ko 1 k2 =
ko+/€cr» 0dnosno K = €. U prvom slucaju, prikazanom na sl.
8a, efektivna relativna permitivnost je €., = 4 — j0,01, dok
je pol k, o1 = ko(0,8944 — j0,0002). Kako je Re{ecr} > 0,
pol je zaklonjen zasekom, te ne stvara ekstremne vrednosti,
odnosno jake promene u podintegralnoj funkciji. U drugom
slucaju je €., = —4 — j0,01, a pol, Cija vrednost sada iznosi
kppol = ko(1,1547 — j0,0005), nije viSe zaklonjen, te stvara
jak ekstremum na putanji integracije.
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Prikaz modula integranda ZI za rasejani potencijal vertikalnog Hercovog

dipola nad kompleksnom k,-ravni, kada je p = 10X\g i z = 2’ = 0. Grafik

je zas

ecen u okolini pola, a maksimalna prikazana vrednost je ograni¢ena na

400, radi boljeg prikaza. Crna linija predstavlja grafik modula integranda duz
realne putanje integracije. (a) eer = 4 — j0,01, pol je zaklonjen zasekom i ne
utie na integrand; (b) eer = —4 —j0,01, pol nije zaklonjen zasekom i stvara
ekstremum;

(5]

(6]

(71

(8l

(91

R. Trembinski and D. A. McNamara, “The engineering modelling of
electromagnetic wave scattering from sea ice by surface-based radar,” in
Proc. 2018 IEEE Int. Symp. Ant. Prop. (APS/URSI), Boston, MA, July
2018.

V. Petrovi¢, Analiza Zicanih antena u prisustvu realnog zemljista meto-
dom likova. doktorska disertacija, Elektrotehnicki fakultet Univerziteta
u Beogradu, Beograd, 1993.

N. Basta and B. Kolundzija, “Efficient evaluation of the finite part of
pole-free Sommerfeld integrals in half-space problems with predefined
accuracy,” IEEE Transactions on Antennas and Propagation, vol. 67,
no. 7, pp. 4930-4935, 2019.

N. Basta and B. KolundZija, “On efficient evaluation of pole-free
Sommerfeld integrals,” in Proc. 2019 Int. Conf. on Electrical, Electronic
and Computing Engineering (IcETRAN), Srebrno jezero, June 2019.

J. A. Bittencourt, Fundamentals of Plasma Physics. New York: Springer-
Verlag, 2004.

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

'W. Rotman, “Plasma simulation by artificial dielectrics and parallel-plate
media,” IRE Transactions on Antennas and Propagation, vol. 10, no. 1,
pp- 82-95, 1962.

G. Dewar, “A thin wire array and magnetic host structure with n < 1,”
Journal of Applied Physics, vol. 97, no. 10, p. 10Q101, 2005.

F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulati-
ons of ferrite-dielectric-wire composite negative index materials,” Phys.
Rev. Lett., vol. 99, p. 057202, July 2007.

Y. Huang, G. Wen, Y. Yang, and K. Xie, “Simulations of ferrite-
dielectric-wire composite negative index materials,” Appl. Phys. A,
vol. 106, p. 79-86, 2012.

L. Solymar and E. Shamonina, Waves in Metamaterials.
Oxford University Press, 2009.

J. B. Pendry, A. J. Holden, W. J. Stewart, and 1. Youngs, “Extremely
low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.,
vol. 76, pp. 4773-4776, Jun 1996.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.,
vol. 85, pp. 3966-3969, Oct. 2000.

D. Gérard and S. K. Gray, “Aluminium plasmonics,” Journal of Physics
D: Applied Physics, vol. 48, p. 184001, dec 2014.

Y. Li, Plasmonic Optics: Theory and Applications. Bellingham: SPIE
Press, 2017.

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having
negative permittivity and permeability,” Physical Review E: Statistical,
nonlinear, and soft matter physics, vol. 64, p. 056625, Oct 2001.

R. Golubovic, A. G. Polimeridis, and J. R. Mosig, “Efficient algorithms
for computing Sommerfeld integral tails,” IEEE Transactions on Anten-
nas and Propagation, vol. 60, pp. 2409-2417, May 2012.

J. R. Mosig and T. K. Sarkar, “Comparison of quasi-static and exact
electromagnetic fields from a horizontal electric dipole above a lossy
dielectric backed by an imperfect ground plane,” IEEE Transactions on
Microwave Theory and Techniques, vol. 34, pp. 379-387, Apr. 1986.
J. R. Mosig, “Integral equation technique,” in Numerical Techniques for
Microwave and Millimeter-wave Passive Structures (T. Itoh, ed.), New
York: Wiley, 1989.

A. Ishimaru, J. R. Thomas, and S. Jaruwatanadilok, “Electromagnetic
waves over half-space metamaterials of arbitrary permittivity and per-
meability,” IEEE Transactions on Antennas and Propagation, vol. 53,
no. 3, pp. 915-921, 2005.

A. Ishimaru, Waves in Inhomogeneous and Layered Media, ch. 3, pp. 7—
34. John Wiley and Sons, 2017.

K. A. Michalski and J. R. Mosig, “On the surface fields excited
by a hertzian dipole over a layered halfspace: From radio to optical
wavelengths,” IEEE Transactions on Antennas and Propagation, vol. 63,
no. 12, pp. 5741-5752, 2015.

New York:

ABSTRACT

A numerical approach to computation of the final part of
the reflected-potential Sommerfeld integral is proposed for the
case of interface of air and negative-permittivity metamaterial.
The integral is computed along the real-axis integration path,
using Gauss-Legendre quadrature fornula. In the analytical
preparation of the integral, singular effects of branch-point
singularities and pole are canceled by means of change of
variables and singularity extraction technique, respectively.
The proposed approach is verified through numerical examples
and comparison to another method.

Numerical computation of the finite part of Sommerfeld
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integrals in the vicinity of interface of air and
negative-permittivity metamaterial
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buocen3zopu peaanzoBaHd NOMOhy
(PpEKBEHIIU]CKH CEJIEKTUBHUX MOBPIIIMHA

Munxka [lotpebuh, uran IEEE, Iyma Jlonaapeuh n Hukoima bacta

Caxncemax— BupycHe MHpeKknHje Koje MMajy NaHAEMHjCKU
NMOTeHIHjaT MPeACTAB/bajy NMPeTHY 32 He10 Y0BeYaHcTBo. Jla On
ce yOp3aja AMjarHocTHKa M mnoBehao kamanuTeT TecTHpama
3apa3e BUpycoM, oTBapa ce Moryhnoct yBohema aaTepHaTHBHHX
MeTO/la [MjarHOCTHKe Kao IITO je NpUMeHa OWoceH3opa.
Ilorpara 3a nmoy3saHoOM AJITEPHATHBHOM METOAOM, y NOCJIEAHmE
BpeMe 32y3MMa CBe BajKHHje MeCTO Y IMJby OpiKe IHjarHOCTHKE,
Behe 0ceT/bMBOCTH, HEMHBA3UBHOT U 0ECKOHTAKTHOI Mepema. Y
TepaxeplUHOM OIICery Y4ecTAHOCTH, KopumhemeM ceH30pa Ha
0a3n (peKkBeHINjCKH ceJIeKTHBHUX NMOBPIIMHA -
MeTamaTepujana, omoryhaBa ce Opxka aMjarHocTHKa W
0CeT/bHBOCT OTKPHBAKka HAHO CYNCTAHIM. Y IHJbY NOY3/JaHHje
JeTeKknHje BHpyca HHQJIyeHHe A, aHaJIM3UpaHe Cy [Be
pasnuuute henuje meramarepujana. buocensop je npojekroBan
ka0 amncopOep, a 3a JeTeKUHjy Kao pedepeHTHH Napamerap
kopumhen je koepuuujeHT amncopnuuje. AHaaM3Upajy ce
(¢pexkBenujcku nMoMepaju U NMpPoOMeHa BPeIHOCTH KoepUIUjeHTa
ancopnuuje ca u 0e3 mocrojama Bupyca. Ilokasdyje ce na
JjeIMHHYHH eJleMeHT ca BHIIe Pe30HAHTHHX Y4YeCTAHOCTH HMa
Belly oceT/bHBOCT 01 eldeMeHTa ca jeJHOM pPe30HAHTHOM
yuectaHomhy.

Kwyune peuu—ancopdep; 6mocensop; Bupyc unHduiyeHue A;
JjeAMHUYHH eJleMeHTH; ()PEKBEHIUjCKH CeJIeKTHBHA MIOBPUINHA.

I. YBOJ

NMHAYCTPUICKH pa3Boj motpedyje peanu3aryjy HOBUX
aJanTHBHUX OC)KUYHUX CCH30PCKHX MPEKa 3a OICITY)KUBAHE
pasnMuUTHX Tpoleca Kao IITO je Haa30p y HHAYCTPH)CKOj
NPOU3BOJIEbH, y CKOJIOIIKE CBpXE W 3a OHOMEIMIMHCKE
npumeHe. OCHOBHE KapaKTEpUCTHKE HOBE TI€Hepaluje
CeH30pa Iojpa3yMeBajy MoryhHOCT moBe3uBama ca APYIHM
CEH30pPCKMM  YBOpPOBMMa H  pa3MeHy  HWHQopMaIyja,
MPEHOCUBOCT ypehaja KOMIAKTHHX AMMEH3Uja ca MajioM
HNOTPOLIOM EHEpruje, Kao M ynorpedy 3a KOHTHHYaJHA
Mepeba Koja Cy He3aBHCHA O] TPEHYTHHX YCJIOBa OKPYXKEiba.

Kao moy3mana antepHarnBa moctojehmM I¥jarHOCTHYKAM
MeToJlamMa, y HOBHjE€ BpeMe ce yBOJE OHOCEH30pH Yy LUJBbY
Opxe auWjarHOCTHKe, Behe OCET/bMBOCTH, HEWHBA3HBHOT U
OCCKOHTAKTHOT Mepema XEMHjCKHX MPOMEHa y YOBEKOBOM
opraHusMy. Y IHMjarHOCTHUKE CBpXe ce Hajuemthe Kopucrte
CEH30pHM Ha MUKPOTAJIACHUM H TePaxepUHUM y4eCTaHOCTHUMA.

EnekTpoMarHeTcku Tajlacd yTHYy Ha Marepujaie y
3aBUCHOCTH  OJl HHXOBE  MOJICKYJNapHE  CTPYKTYpe.
Jerexnujom peakiuje Mosekyia HakoH moOyhuBama moryhe

Munka  Ilotpebuh, Hukoma bacra, [ymwa Jlonwapesuh —
Enexrporexumuku ¢akynrer, YHuBep3urer y beorpamy, BymeBap kpaspa
Anexkcanapa 73, 11020 beorpan, Cp6uja (e-nomra: milka potrebic@etf.rs,
nbasta@etf.rs, dunja.loncarevic@live.com).

j€ YTBPAMTHU CTPYKTYPY aHATU3UPAHUX TKHBA M TCYHOCTU KaO
HOCIIEANILY BUXOBUX JIMEEKTPUIHUX CBOjCTaBa.
EnextpomarneTcku Tamacu Mory g0 onpehere wmepe
npoxvpatd y — aHaluu3MpaHe — y3opke, omoryhasajyhun
HCWHBAa3WBHY JHWjarHOCTUKY. Behwna  opranckux u
HEOpPraHCKUX MaTepujana uMma crnenuduydan (GppeKkBEeHIHjCKU
0/13WB, TIa ce moMohy CeH3opa MoXKe ToOuTH MH(pOpMaIHja o
CTPYKTYpH MaTepujana u ¢pyHkuuonaaHocTu. [lomohy Hu30Ba
ceH3zopa Moxe ce AoO0MTH mH(opMaiuja o GPEeKBEHITHjCKOM
O/I3MBY M UCTOBPEMEHO O MPOCTOPHO] PaCHOIEIH HajMarber
Jiena y30pKa KOjH ce TeCTHpa.

MuxpoTanacu npoaupy IyOJjbe y aHaIM3WpaHH Y30paK y
OJTHOCY Ha Talace y TepaXxepIHOM WM ONTHIKOM OIICETY, alli
nMajy HajHUKY pe3oiyuujy aerekuuje. Kopucre ce mpu
JIETEKIMjH MamuX MPOMEHa KOHIIEHTpaluje TIIyKo3e y KpBH,
NETEKIMj eTaHoJia y BOAWM, TyMopckux henwmja, uta. Konx
Onuomatepujana kao mro cy nporenHu u JIHK, ydecranoctu
BHOpaLMOHMX MOJOBa MoJIeKyJa Hanaze ce y THz oncery, ma
ce 3a BUXOBY nereknujy kopuctu THz cmekrpockomwja.
Bupycu cy manowecture mpegnnka ox 10 mo 300 nm, koje
KapakTepuile ojaroapajyha aueleKTpuYHA TEPMHUTHBHOCT.
Bakrepuodara (Bupycu m3mely 30 nm u 60 nm) ycnemHo je
JeTeKToBaHa oMohy ceHzopa 0aznpaHOT Ha MeTaMaTepHjaiy
[1], [2]. Heku BupycH IOKa3aiu Cy MaTOreHa CBOjCTBA ca
MaHIEMHjCKIM ToTeHnHjanoM. CTaHaapaHA METOJ JeTEeKIHje
Bupyca je RT-PCR merona (Reverse transcription polymerase
chain reaction) Koja OTKpHBa TPHUCYCTBO CHEIU(PHIHOT
TeHeTCKOr MaTepujana y Owiao KoM maroreny. Osa
IUjarHOCTHYKAa METOda TIPEACTaBjba CIOXKEH TOCTyIaK
JIETEeKIMje W BPEMEHCKH je 3aXTeBHa (Tpaje M J0 TPHU cata).
ANTepHATUBHU HA4YWH JCTEKIHjEe BUpYCa, y TEPaxepIHOM
OTICeTy y4YeCTaHOCTH, KOpHIIhemeM CceH3opa Ha 0a3u
MeTamarepujanma, omoryhaBa OpXy  IOHjaTHOCTHKY U
OCETJBUBOCT OTKpHBame HaHodecTHla. [locienme neueHuje
THz cmektpockomuja ce KOPUCTH 3a Op30 OTKpHBame U
WACHTUQHUKAIMjy OWONOIIKAX Yy30paka, jep omoryhasa
OECKOHTAKTHY M HEMHBA3WBHY JETeKIHjy Oe3 kopumhema
peareHaca 3a obemnexaBame y3opaka [3], [4]. Ako je 3a camy
JIETEKIN]y TMOTPEeOHO HEKOJMKO CEKyHIH, Moaajyhu U Bpeme
MoCTaBJbarha y30pKa, 3HAYM Ja Iieya oopana tpaje oko 10-15
CEeKyHJH, IITO Ha THEBHOM HUBOY M3HOCH Mpeko 5760 - 8640
aHanMM3UpaHuX y3opaka. I[lopehema pamu, mpema 3BaHUIHUM
nojganuMa MuHHCTapcTBa 37ApaBiba  PemyOnmke Cpbwuje,
TpEeHyTHH KalalUTeTH Ha HHUBOY JApxkaBe cy oko 11000
y30paka JHEBHO 3a jerekinujy Bupyca SARS-CoV-2
kopumhemem RT-PCR mertone [5].

VY mmsby mTo OpiKe JUjarHOCTHKE 3apa3e BUPYCHUMa, Y OBOM
HACTPAKWBAKY Cy aHAIM3UpPAaHU OMOCEH30PHW 3a JETEKIIH]jY
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BUpyca MH]IyeHIle A KOjH Y3pOKyje 3apa3Hy OojiecT mrTuia
MO3HATy Kao nTudju rpun. OmacHOCT MO JBYACKY BPCTY
HacTaje OHJa KaJla BUPYC HACTAHM jeTMHKE KOj€ JKUBE YHYTap
JKUBUHCKHX (hapMu, 9uMe ce MOTYhHOCT mpeHoca Ha JoBeKa
3HaTHO  moBehaBa  ycinem — WHTEH3WBHOT  KOHTAKTa.
[TanmeMujcku MOTEHNIHjald KOjH AaTH BHPYC MMa je jedaH Ox
TNIABHUX pas3jiora UCTPaXHWBamba Yy OONACTH KOHCTpYHCAbha
ouocensopa [6].

VY pany je u3BpIIeHa yropeaHa aHau3a nephopMaHCH JIBE
jemmHMYHEe henmje MeTaMmaTepWjayia 3a JETEKIHjy BHpyca
unpayenue A. IlpukasaH je mperyien pesynrtara IoOHjeH
CJICKTPOMArHETCKOM aHAJIHM30M TEPHOJAUYHHUX CTPYKTYpa U
M3BEJICHH CY 3aKJbYUIH Ca JaJbUM MPaBIHMa HCTPAKUBAMA.

II. ®PEKBEHLMICKU CEJIEKTUBHE MMOBPIIMHE

OpeKBEHI]CKH CEIEKTUBHE MOBPIIMHE — MeTaMaTepH)jai
Cy BEUITaYKN MaTepHjaliil KOjH Cy MaKJbUBO IPOjEKTOBAHHU Jia
Jajy keJbeHH (peKkBeHIMjcKH on3uB. OBHM Marepujanu cy
CAauMI-CHH O]l jeIUHWYHHX eJIeMEeHaTa dYHje Cy ANMEH3Hje
3HaTHO Mame OJI TaJlaCHEe My>KWHE WHIMIEHTHOT Tanaca [7].
JenmuHUYHM €JeMEHTH MOTY OWTH peallM30BaHH OJ Pa3HHUX
Mmarepujajia ¥ pacropelyjy ce mepuoauyHO y IpoCTOpy.
3ajemHruka OCOOMHA CBHX MeTaMaTepHjaia je Ja TOCEyjy
KapaKTePUCTUKE KOje HEMa]y IIPUPOTHI MaTepHjallu.

KapakTepuctuke HECBOjCTBEHE 3a  KOHBCHIIMOHAHE
MaTepujaie, HHCYy TOCIEOWIla caMuX  KopumrheHux
MaTepujama (IUENeKTpUKa W MeTaja) 3a peaju3amujy
JeIUHUIHOT elieMeHTa, Beh cy pe3yiraT OOJHMKa eIeMEHTA,
Ka0 ¥ TPaBWIHOCTH IO KOjOj C€ eJNEeMEHT IePHOIUTHO
nmoHaBJka y mpocropy. IIpenmsno oppehena reomerpuja
BCIITAYKOT MaTepHjajia, Kao ¥ HEroBe IUMCH3HjC U
opwjeHTanja My oMmoryhaBajy KOHTPOIy TPOCTHpama
€JICKTPOMAarHeTCKUX Tajaca (ciabibeme, arncopOoBame, WU
ycMepaBame Tajaca).

Hampengak TexHomorwja wW3paje MeramaTepHjaia, ca
IUMEH3WjaMa jeOUHHYHWX eJIeMeHaTa pefa HaHOMETpa,
JIOHOCH MOTYhHOCT HHXOBE MacOBHE NMPOM3BOJAIE W IIHpPE
JIOCTYITHOCTH. TepaxepIiHd MeTaMaTepujaid HyJe LTUPOK
criektap Moryhux mpuMeHa Kao ITO ¢y Op3W MOIyJaTOpH,
€JICKTPOMAarHeTCKu  amcopOepu, GUITEpH, pasHe BpCTe
CEH30pa, NOJIYIPOBOHUYKH JIACEPH U IETEKTOPH.

Ouekyje ce ma he ceH3opcka TEXHOJIOTHja 3aCHOBaHA Ha
MeTaMaTepujanuMa y ckopoj OymyhHOCTH TpYXHTH IIHPOK
CICKTap NpPHMEHA y MEIUIIMHU TOpeI OHHMX BE3aHHUX 3a
nmpucycTBO BUpyca [8]. broceHzopu ce MOTy KOPHUCTHTH 3a
JIETEeKNMjy KaHIeporeHnx henwja, y obiactu pamuoioruje,
Kao M y 00JaCTH MEIUIIMHCKHX OCKHIHHX TEICMETPH]jCKHUX
cucremMa.

Y 0BOM HCTpaxuBamy, ancopOepu cy MpPOjeKTOBAaHU Ha
0a3n Meramarepujasia, a 3a JeTeKUHjy je KopuinheH
KOC()MIMjEHT alCcopIlHje y IaTOM OICEry Y4eCTaHOCTH.
VY4ecTaHOCTH JIOKAIHMX MaKCHMyMa ariCopIIHje 3aBUCE O]
CpeoMHE y KOjoj Ce CeH30p Haja3W, Ia ce OdYeKyje Ja
J0fIaBamkbeM Clloja BHpYyca Ha IOBPIIMHY ceH3opa jaohe no
noMepara y4ecTaHOCTH MaKCHMyMa y OJHOCY Ha MOYETHY
BPEHOCT.

A. Jeounuunu enemenm memamamepujaia

[IpBo ce aHanmu3upajy ABa MoJeia jeANHUYHOT eJIeMEHTa
Koja ce KOpUCTe MpH IPOjeKTOBamY MeTaMaTepHjaia 3a
JIETEKIHjy BUpYyca HHDIyeHLe A.

[TpBu n3abpaHy jeTUHUYHU €JEMEHT (MOoJeN A) je KpyXKHH
monyTtanacHu pezoHarop (Split Ring Resonator - SRR), koju
ce cacToju W3 KpY)KHE KOHTYpE Ca MaluM IPOLETOM KOjH
Y3pOKYje KamallUTHBHOCT Ha KpajeBUMa KOHTYpE IITO yTHYE
Ha CMamUBamke pe3oHaHTHE ydecTaHocTH (ci. 1). Jumensuje
SRR (Momenma A) cy cmemehe: D=15 pm, w=1.25 pm,
g =1 pm. IlpocTropHa nepuosa IMOHaBbaKka 32 PEANU3ALN]y
MeTamarepujana 1o x-ocu M y-ocu je a =25 um. SRR je
peann3oBaH o1 31ata [9].

Cux. 1. Kpy>kHH IPCTEHACTH IOIyTalacHH PE30HATOP.

Jpyru jenuuuunu enemeHT (Monen b) je mepdopupanu
NIPaBOYTraoHH PE30HATOP Ca METAIHOM ILIo4oM. Peann3oBan
je on 3mara nebsbuHe fgoq= 0.4 um, J0K je penaaTHBHA
nepMUTHUBHOCT moiore &=3(1—-j0.05). Ha cm. 2 je
npukasad mozxen b ca obenexenum aumensujama: ¢ =9 pm,
[=80um, w=40pum, [;=25um, L=35pum, 6=18 um.
Ilpocropna  mepuojga  TOHaB/baka 32  pealu3anyjy
MeTamarepujana mo x-ocu m3Hocu Py= 100 um, a mo y-ocu
Py=60 um [7].

Ha ydecranoctima on Hexonmuko THz, mpoBomHOCT 31maTa
je QyHKOMja pagHe Y4YecTaHOCTH M omucaHa je JpynoBum
MOJIETIOM:

o =g, /(v-jo), (1)
rie je o =2mf yraoHa y4ecTaHOCT, f, je y4ecTaHOCT Tia3zme
(corcTBEHa Y4ECTaHOCT OCIMIIOBama CIO0OJHUX €JIEKTPOHA)
u u3Hocw 2184 THz (0, =21 f;), a y = 40.5 x 10" s™" (dpaxrop

NIPUTYIICHA KOjU MOTHUYE O pacejama IPOBOAHUX €JIEKTPOHA)
[9], [10] (ca. 3).

hgo]d
.,
T

hgold

Cn. 2. Tlepdopupanu mpaBoyram pe3oHATOp: OOYHM IIpPEceK U Tropma
CTpaHa IITaMIIaHe IIOYHLE.
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IlpoBoaHoCT 371aTa
:

SITHz]

Ci. 3. PeaniHy 1 ©MaruHapHu J1€0 MPOBOIHOCTH 3J1aTa.

PenaTuBna nepMHTHBHOCT HH(IyeH3aBHpYyca A
: : : :

-0.005

-0.01

-0.015

real(e)
imag(e)

-0.02

-0.025

2,25 ! ' ! ' -0.03
0 1 2 3 4 5 6

f[THz]
Cn. 4. PeanmHun ¥ MMarvHapHH [0 pElaTHBHE IEPMUTUBHOCTU BHpYca
nadIyeHne A.

b. Mooenosarve nepmumuernocmu upyca un@nyenye A

PenatmBHa mepMUTHBHOCT BHpyca uHpIyeHHme A je
(yHKIHja pagHe yIeCTaHOCTH | Aata je popMymom:

eE=¢,+]j&,, ()
Sre = (1’5)2 +(0)Iz"’ (0)2 +0)§ ))/(((,02 +(D(2) )2 +(va)2) ’ (3)

o =-0hor, [[(@ +0)) +(ro) ). @

rae ¢y Oy = vy = 4 THz, 0y = 2.8n THz [6] (cn. 4).

Bupyc nnbyeHme A ce Mozenyje clojeM KOju MpeKpuBa
MeTaMaTepHjall MpeKo LITaMIiaHe CTpykType. [ebspune cioja
BUpyca (Ayinys) KOje Cy pa3MaTpaHe y OBOM HCTPaXXHBamby CY
I um, 5 yumu 8 pm [6].

B.  Moodenosare nepuoduunux cmpykmypa

Kako cy Meramarepujaii cauMmeHH Of BEJHKOT Opoja
jeAMHUYHHX eJieMEHaTa, MOJCIOBAakE IOApa3yMeBa HUXOBO
MIEPUOANYHO MOHaBJbame. [lojenHauHo MojenoBame henmja
MeTaMarepyjalia je pejaTHBHO 3aXTEBHO M YBOJIH BEIHKU OpOj
HEMO3HATUX YHME Ce€ BpeMe U3BpIIaBamba CHMYJAILHje
nmpoxyxasa. 300T Tora je Ipu MOJENOBakY MeTamarepujaia,
y cotBepckom anaty WILP-D, xopuinheHa (yHKIMOHATHOCT
Periodic Boundary Condition (PBC). PBC je ckyn rpaHHYHUX
yCcIoBa KOjU C€ TPUMEBY]y Y aHaau3u OecKOHAaYHHX
JIBOAMMEH3NOHUX €JEKTPOMAarHeTCKHX CHCTeMa Mozeiyjyhn
MPUTOM CaMO jelaH eJIeMEeHT IOCMAaTpaHOor cucTeMa. Taj
eIeMEHT ce Ha3WBa jeAWHWYHH eJNeMeHT wim hemnja.
JenuHUYHM ~ eneMEeHT MoXe OWTH  TPOIMMEH3HMOHATHA
CTPYKTYpa KoOja ce NEepHOAWYHO IoHaBba y xOy-paBHU
tdopmupajyhm Ha Taj HAYMH ,,0pPTOTOHAJHY pEIIETKY.

Ileprome nyx x-oce W y-oce cy pemoM dx=X,-X; u
dy=7Y,-Y|, IOK cBaKka z-KOOpJMHATA jEANHUYHOT €JIEMEHTa
MOpa 3aJ0BOJbABATU YyCIOB Z;<z<Z, Ilpuctynu cy
neUHUCAHN Kao paBHU napanenne xOy-paBHH, z-KOOPANHATE
Z, (Port 2), onnocHo Z, (Port I). Tlocroju m moryhHoct
nepuHICArha JOMEHA HCIIOJ MIPHUCTYIIA 03HaYeHOT Kao Port 2,
JIOK je JOMEH W3HAJ MIPUCTYIIAa O3HAYCHOT Kao Port I BaKyyM.

IMpu mopenoBawy, PBC (yHKIMOHAIHOCT je IOCTYITHA
jenuHO Kama je y coTBepy operation mode TIOAENICH Ha
jenHy ox ommuja 3a pacejame [11].

I[pumena ommmje PBC mnpukasaHa je Kpo3 TMpUMEp
MoJienoBama jenuauuHe henmuje monena b Oe3 Bupyca uuja je
reoMeTpHja mara Ha ci. 2. Ilepmoma myx x-oce onpehena je
cienehnM mapamerpuma:

de=X,-X, =P, X,=-P[2=-X, (5)
JIOK je TIepro/ia IyK y-0ce OIUCaHa:
dy:YZ_Yl:Py,Yl:_Py/zz_Yz_ 6)

Symmetry X
No symmetry
No symmetry
No symmetry

0

Periodic Boundary

X1: ‘—PXJS ‘[mm] X2: \Px,ns ‘[mm]

i [Py_os [imm]  v2: [Py_05 [tmm)

Zt‘—Z ‘[mm] 22 \z ‘[mm]

Domain below Port 2

Ca. 5. Ilpuxka3s npo3opa y anaty WIPL-D y kome ce nedununie PBC.

| (O (o o

Cn. 6. Meramarepujan
(IBOAMMEH3HOHU MIPUKA3).

ca je,E[I/IHI/I‘IHI/IM CICMCHTOM MOZCIa b

3a Z, u Z, y3eTe cy BpEIHOCTH KOje OJroBapajy, peiom,
MHHUMAJIHAM M MaKCHMAaJHUM Z-KOOpIWHATaMa jeANHUIHOT
enemenTta mosehanmx 3a 10%, mpema mpemopymm y [11].
JloMeH ucron mpucTymna o3HadeHOr kao Port 2 je BaKyyM.
[Ipuka3 mpozopa y codrBepckoMm amary WILP-D y kome ce
nepurniie PBC mpencraBibeH je Ha ci. 5. Ha cm 6 je
NpUKa3aHa MepuoyHa CTPYKTypa (MeTaMaTepHjan) 4Hju je
jemwmHMYHA eneMmeHT Monen b. Ilapamerpm Tamaca kojum
moOylyjeMo mocmarpaHy CTPyKTypy Cy aAaTé y Tabemn I
Hctn mocrynmak je mnpuMmemeH 3a neduaucame PBC
napamerapa CBUX aHAJM3UPaHUX CTPYKTYpa.
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TABEJIA 1
ITAPAMETPU NOBYBYIVREI TAJIACA.

[TpaBang E,[V/m] Eq [V/m]
o[°] | 0[°] | Real Real
0 90 0 0 1 0

Imag Imag

III. CUMYJIALIMOHU PE3YJITATH JETEKLIUIE BUPYCA

Pesynratu nerexiuje Bupyca nHdiayenue A xopumhemem
MeTamareprjajiia ca jeAMHWYHUM heiMjaMa O3HAUYEHHMM aKo
Mmozen A u b natu cy y HacTaBky.

A. Mooden A 6e3 npucycmea eupyca

Ha cn. 7 je mpukaszaHa jeauHuyHa henmja mozmena A 6e3
BHpyCa, JOK je Ha CJI. 8 TMpHKa3aH HEH KOe(HUIMjeHT
ancoprnuuje. Koepuumjenr ancopnumje ce neduHuie xao y
[12]:

A =1, (O] =[8. (N[ (7

-

Port1

)

Cun. 7. Jenuununa henuja monena A 6e3 mpuUCycTBa BUpyca.

05 Koepuuujent anconpuuje mogeaa A

041 1
031 1
<

021 ;i

0.1

0 n . !
1 L5 2 2.5 3 3.5 4 4.5 5 55

S[THz]

Cn. 8. KoebummjeHnt amcopmmuje MeTamaTepujala ca jeAHHHIHOM
henujom moznena A, O6e3 mpucycTBa BUpyca.

Ca ci. 8. ce MOXXe YyOUHTH Ja KOG(HUIHjEHT aIlCOPIILHje
JOCTIDKE MaKCUMyM TIpH ydecTaHOCTH fa=3.416 THz u
n3HocHu A, = 0.4755.

b. Mooen A ca cnojem eupyca

Hakon nmomaBama cioja Bupyca (ci. 9), mocmarpas je
BEroB YTHIA] Ha KoeduuujeHT arncoprnuuje. Ha cm. 10 je
MpHUKa3aH KOS(HUIHjESHT arncopniuje y QyHKIMjH YIeCTaHOCTH
3a yeTupu ciaydaja monena A: 1) Ge3 Bupyca, 2) ca ciojeMm
Bupyca nebspunae 1 um, 3) ca ciojem BUpyca neOspuHE S5 pm,

u 4) ca cnojem Bupyca aebspmHe 8 um. Y Tabemm II cy
W3/IBOjEHU KJBYYHH pe3ynTartH ca ci. 10.

Poit 1 T’

Port 2

Cn. 9. Jenunnuna henuja Monena A ca ciojeM BUpyca.

Koepuuujenr ancopnuuje mogeaa A
: : : T ! :

0.6
—O0e3 Bupyca
L " = 1 pm
0.5 5
04 8 pm
0.3
<
0.2

Cn. 10. Koedunmjent ancoprnuuje monena A 06e3 u ca CliojeM BHpyca
pasnuuutux nebspuHa (1, 5 u 8 um).

TABEJIA 11
JIOKAJTHI MAKCIMYMHU KOEDULIMIEHTA AIICOPITLIJE Y VYUECTAHOCTH KOJE
OJITOBAPAJY TUM MAKCUMYMUMA 3A MOJIEJT A BE3 U CA CJIOJEM BUPYCA
PA3JIMUUTUX JEBJBUHA (1, 5 11 8 pm).

ca BEpYCOM
6e3 Bupyca Dyirus [um]
1 5 8
Frea [THZ] 3.416 2770 | 2.596 | 2.579
Apeak 0.47755 0.48114 | 0.44127 | 0.5022
Ufhea [GHZ] / 646 820 837
|44 pear| / 0.00359 | 0.03628 | 0.02465

Ha ocnoBy Tabene II ce Moxke younTH (QpEKBEHILHU)CKH
moMepaj Koj Moaena A ca ciojeM BUpyca onroBapajyhe
nebJbuHe Y OAHOCY Ha Mozien 0e3 BUpyca. AKO TOCTOjH
(pEeKBEHIIN]CKH ITOMEPaj Y OJ3UBY, OH/IAa KQKEMO J1a Ce BHPYC
Moxe nerekroBaTH. Ca rpaduka mpukazaHor Ha ci. 10 ce
jacHO youaBa /a je MOryhe NeTeKTOBATH IIOCTOjarme BHpYcCa.
Taxole, moryhe je HanpaBuTH 1 pazauky usmely Tora koja je
nebspuHa cnoja Bupyca. Cioj mebspuHe 1 um ce ox Apyrux
BPEIHOCTH pasiuKyje Mo (HPEKBEHINjCKOM IIOMEpajy, AOK ce
cinojeBu nebspuHa S5 1 8 um melycobHo Mory nudepeHnuparn
10 BPEJHOCTH KOoe(HUIIMjEeHTa arlCopILHje Y OJJHOCY Ha MOJEN
6e3 Bupyca. M3mely cmojeBa nebspnHe 5 U § Um mocToju U
Manmd (PEKBEHIMjCKH IIOMEpaj, KOjU y 3aBHCHOCTH OJ
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pe3onyIije MEpHOT MHCTPYMEHTa KOjUM ce Mepe S-
rnapameTpu OHOCEH30pa, Takohe Moke 1a ce KOpPHCTH 3a
nudepeHnrupame 0Ba IBa MOJIea.

B. Mooen 5 6e3 npucycmsa supyca

Ha cn. 11 je mpukazana jequauuHa henuja moznena b 6e3
BUpYCa, JOK je Ha ciI. 12 maT KoedHUIjeHT ancopIije oBor
MoJena.

Ca rpa¢uka npuka3aHor Ha cil. 12 MOTy ce OYMTaTH YeTUpH
JOKaJHa MaKCUMyMa, a BPEIHOCTH JIOKAJIHUX MaKCUMyMa
Koe(UIHjeHTa arcopIje U y4eCTaHOCTH KOje OATOBapajy
TUM MakCUMyMuUMa cy wu3aBojeHe y tabexmu III. buhe
aHaJM3MpaHa camo IpBa JIBa JIOKaJHA MaKCUMYyMa.

Port 2

Cun. 11. Jenuanuna hemmja mozena b 6e3 mpucycTsa Bupyca.

Koedunujent ancopnuuje mogena b

J[THz]

Cn. 12. KoeduumjeHnt amcopruyje MeramarepHjana ca jeIUHHIHOM
henujom monena b, 6e3 mpucycrtsa Bupyca.

I'. Mooen b ca cnojem eupyca

Kao n xon Mozenia A, mocMarpamo edekar ciioja BUpyca Ha
KoepunmjeHt amcopmmmje. Ha cim. 13 cy mnpukazann
KoeUIMjeHTH ancopnuyje y (YHKUUjH YYecTaHOCTH 3a
yeTUpH ciiydaja monena b: 1) Ge3 Bupyca, 2) ca ciojeMm
BUpyca aebspuHe 1 pm, 3) ca ciojem Bupyca nebsbruHE 5 pum,
u 4) ca ciojem Bupyca nebspuHe § pum.

VY tabenu IV cy natu kJpyyHu nogaiu ca ci. 13. Pesynratu
Cy CIMYHM Kao W 3a momen A. JacHo je nma ce BupYyC
nHpIyeHIE A MOXE  JNETeKTOBaTH  KOpHIIhemeM
MeTamarepujajla 4Yuju je jeOUHWYHH eleMeHT Monen b.
Taxole, moryhe je HanpaBuTH 1 paziuky u3Mmely Tora xoja je
y3eta nebspmHa cnoja Bupyca. Cioj mebsemHe 1 pum ce of
JIPYTUX BPEIHOCTH Pa3iMKyje MO (pPEeKBEHIMjCKOM IIOMEPajy,
JIOK ce ciojeBn npebssmHe 5 m 8 um wmelycobno mory

mudepeHIMpaTd 1O TPOMEHH BPEIHOCTH KOoe(HIHjeHTa
pedrnekcuje y oqHocy Ha Mozen 0e3 Bupyca. Uzmely cnojea
nebspuHe 5 U 8 um mocToju u MaiH (PEKBEHIIN]CKU TTOMEpaj],
KOji y 3aBHCHOCTH O]l PE30JdyIfje MEpPHOT HHCTPYMEHTa
KOjUM ce Mepe S-mapamerpu OHoceH30pa, Takohe Moxxe na ce
KOPHCTH 3a Iu(epeHIrpame 0Ba 1Ba MOJEIA.

TABEJIA 111

JIOKAJIHU MAKCUMYMU KOEGULIMIEHTA ATICOPIILIMIE U YYECTAHOCTHU KOJE
OJZIT'OBAPAJY TUM MAKCUMYMUHMA.

i 1 2 3 4
foeak,/[THZ] | 0.864 | 1.809 | 2.650 | 2.970
Apeari | 0.96949 | 0.86522 | 0.9495 | 0.80191

Koeduuujent ancopnuuje monena b ca u 6e3 supyca

—6e3 BUpyca

J[THz]
()

Koepunujent ancopnuuje mogena b ca n 6e3 Bupyca

‘ —6e3 Bupyca
0.95 = 1 pum
5 pm
0.9 pr8pum
0.85[ b
. 0.8
0.75
0.7+ B
065 I L I I

0.6 0.7

6
Cn. 13. Koedunmjenr ancopnumje monena b 6e3 u ca ciojeM Bupyca
pasnuuuTux ne6sbuna (1, 5 u 8 um): (a) y mwupem omcery yuecTaHocTH, (0) y
OKOJIMHH TIPBOT JIOKAIHOT MAKCHMyMa.

Y OKONMHM TPBOI M JPYror JIOKAIHOT MaKcuMyMa,
pedepenTHor (opuruHanHOT) Mozeia b 6e3 Bupyca, youasa ce
CIIMYHA pacmojesia MaKCUMyMa 3a paziInduTe AcOJpHHE Clioja
BUpYcCa, Y3 HE3HATHA OJICTyINama (PPEeKBEHIM]CKOT IIoMepaja u
BpeqHocTH KoeduumjeHra ancopnuuje. Tpehm um werBpTn
pedepeHTHH JOKaJHA MaKCHMyMH HHCY KOpHWIIhEHH NpH
JIETEKIMjH, jep Cce Haja3e peallaTWBHO Oyin3y, a y ciydajy
NIPUCYCTBAa BUpyca J0JIa3d N0 MpeKjanama arcopPIINOHIX
KPHBUX y TOM JAEIy CIICKTpA.

IV. 3AKBYUYAK

VY pany je mpuxazana moryhHoct xopumhema amcopOepa
Kao OmMoceH3opa 3a MOETeKIHjy mpucycta Bupyca. Kao
pedepenTHH  mapamerap — Aereknuje  kopumheH  je
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koepunujeHt amncoprnuuje. [lokaszyje ce ma je ™oryhe
JETeKTOBaTH (PEKBEHIMjCKM TIOMepa] W/WIA IPOMEHY
BPEIHOCTH JIOKATHOT MaKCUMyMa KOe(HUIIHjeHTa alCopIIyje,
y OOHOCY Ha ciydaj OmoceH3opa 0Oe3 Bupyca. Y3umajyhu y
003up oba mapameTpa HpPH OMIYYHMBAKBY MOXE CE JOHETH
mpenu3aH 3aKkbydak. buoceH3op je peanmn3oBaH Ha 0a3u
MeTaMaTepyjana ca jeJHHHIHHM hendjama Koje Mory J1a
JETEKTYjy BUpYC HHQITyeHIe A.
TABEJIA IV
JIOKAJIHU MAKCUMYMU KOEOUITUIEHTA ATICOPIIIAJE U YYECTAHOCTU KOJE

OJITOBAPAJY TUM MAKCUMYMUMA 3A MOJIEJI b BE3 U CA CJIOJEM BUPYCA
PAJIMUUTUX JEBJBUHA (1, 5 1 8 pm)

ca BHpyCOM
6e3 BUpyca hyirus [m]
T 1 5 8
Jpeak, 1 [THZ] 0.864 0.829 0.797 0.789
Apeak, 1 0.96949 0.96522 | 0.94446 | 0.9659
: o 1| [GHZ] / 35 67 75
|44 pear, 1| / 0.00427 | 0.02503 | 0.00359
Jpeak, 2 [THZ] 1.809 1.762 1.731 1.720
Ape 2 0.86522 | 0.87684 | 0.89905 | 0.91508
2 Ufoea. 2| [GHZ] / 47 78 89
|44 ear, 2| / 0.01162 | 0.03383 | 0.04986

Ha ocHoBY anammise nBe jeanHU4HE henuje MoXe ce yOunTH
Jla je KpUTHYHA Pe30IIylHja WHCTPYMEHTa KOjHuM ce Mepe S-
nmapameTpu OwmoceHsopa. IIpemHocT mpw HAeTeKOWMjm HMa
MeTamarepujal 4Mju je jenuHn4Hu exeMeHT SRR (Mozen A),
jep je (hpexBeHInjcKl IoMepaj ca ciojeM Bupyca Bumie of 10
myTa Behnm o MCTOT (PPEeKBEHIMjCKOT IOMEpaja 3a Clydaj
JEIMHUYHOT eJEeMEeHTa Kao MeppOpHUpaHOr IPaBOYIIIOT
pe3onaropa (Monen b).

Mana OnoceH3opa 6azupaHoT Ha MOZAETy A, y OJHOCY Ha
Mmozen b, ce oriexa y Tome mITO MPBH CEH30p IOApa3yMeBa
pax Ha BHIIMM YydYecTaHocTHMMa. Takohe, KoeduIMjeHT
ancoprmije moxena b ja 3Hadajno Behm onm momema A mTo
pe3ynTyje HM3paKeHHWjUM JIOKaJJHUM  MakCHMyMuMa |,
nocyieIn4Ho, Behoj OCeTJbMBOCTH TaKBOT ceH3opa. Jomr jeaHa
npesHoCT Monena b motuue U3 4ynMmeHuIe J1a OH Oe3 BUpyca
MMa BHIIE JIOKATTHUX MakCHMyMa KOjU MOTY Jia c€ KOpHCTE
Kao pedepeHIa y ciydajeBUMa Kaja ce CIlIoj BHpyca HaHece
Ha CeH30p.

Jdajbu  mpaBUM  HCTPaXWBamka  MOAPa3yMEBIH  OH
UCIIUTHBAbE OCETJLMBOCTH CEH30pa Ha Pa3yIMuUTE MOJITHIIOBE
U cojeBe BHpyca MH(]IyeHIe A, aHaTH3Upame Koe(HUIHjeHTa
ancoprmyje 3a Behn Opoj pasmHMYMUTHX BPEOHOCTH NeOJpHHA
clioja BUpyca, NpoydaBame Kopuinhema KOHayHOTr Opoja
JEIMHUYHMX elleMeHaTa y OJHOCY Ha OeckoHauaH Opoj, Kao u
Kpajiby U3pajy OBAKBOT CEH30pa.

3AXBAJIHULIA

OBo nuctpaxuBame je pal)eHo y okBUpY mpojekra 6p. 50206

Koju je ¢uHaHcupaH o PoHIa 32 MHOBAIMOHY JETATHOCT U3
Ooyuera PemybOmuke CpOuje on crtpane MuHucTapcTBa
MPOCBETE, HAYKE M TEXHOJIOIIKOT pa3Boja, a kpo3 [Ipojekar 3a
yHanpeleme KOHKYPSHTHOCTH M 3allollJbaBama (CIIOpa3yMm o
3ajmy ca CetckoM OaHkoM). McTpakuBame je JCTMMHUIHO
MOJPKAHO OJf cTpaHe MUHHCTapCcTBa IMPOCBETE, HAyKe W
TEXHOJIOWIKOT pa3Boja Pemybnmke Cpouje.
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ABSTRACT

Viral infections that have pandemic potential pose a threat to all of
humanity. In order to speed up diagnostics and increase the capacity
for testing of virus infection, the possibility of introducing alternative
diagnostic methods, such as the use of biosensors, opens up.
Recently, the search for the reliable alternative to the existing
methods has occupied an increasingly important place in order to
achieve faster diagnostics, higher sensitivity, non-invasive and non-
contact measurement. In the terahertz frequency range, using sensors
based on frequency-selective surfaces - metamaterials, enables faster
diagnostics and sensitivity of detecting nano substances. In order to
more reliably detect influenzavirus A, two different metamaterial
cells were analyzed. The biosensor was designed as an absorber, and
the absorption coefficient was used as the reference parameter for
detection. Frequency shifts and changes in the values of the
absorption coefficient with and without the existence of the virus are
analyzed. It is obtained that a unit element with more resonant
frequencies has higher sensitivity than an element with one resonant
frequency.
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