
Вештачка интелигенција

Artificial Inteligence

Abstract—While complex algorithms for NLP (Natural

language processing) are being developed, base tasks such as

tagging remain very important and still challenging. NLTK

(Natural Language Toolkit) is a powerful Python library for

developing programs based on NLP. We try to leverage this

library to create a PoS (Part of Speech) tagger for a contemporary

Serbian language. Eleven different models were created by using

NLTK tagging API. The best models are transformed with the

Brill tagger to improve the accuracy. We trained the models on

the tagged dataset counting 180,000 tokens. The best results on the

test set of 20,000 tokens were demonstrated with the Perceptron

tagger: 92,52 – 95,76% accuracy for the different tagsets.

Index Terms—Natural Language Processing; Machine

Learning; Neural Network.

I. INTRODUCTION

In the last couple of years, a big advancement in the field of

Natural Language Processing has occurred. There are state-of-

the-art language models that perform exceptionally in various

language tasks [1-3]. The applications are getting broader, the

algorithms are more complex [4]. Beneath the surface, there is

a limited set of the tasks that still pose challenges to the

researchers. Small improvements in the basic tasks pose

immediate benefits to the tasks which are performed later in the

pipeline.

One basic task is PoS (Part of Speech) tagging, a process of

assigning a part of speech category to each token in the text.

The program that performs tagging is called tagger. The taggers

can be created in multiple ways. In this paper, we will create a

tagger for Serbian with a help of a Python library NLTK

(Natural Language Toolkit). Besides just exposing more than

50 corpora and lexical resources, NLTK is used for making

programs that handle human language data, ranging from

tokenization to semantic reasoning. NLTK API makes it

possible to create multiple standalone tagger models as well as

to combine them. We are going to try and test every model

available in the version 3.5 released in March 2020. Having a

plethora of different algorithms makes this library a good

choice for a research.

Serbian language belongs to a group of low-resource

languages so there’s a modest research on this topic. First

attempts to create an automatic PoS tagger for Serbian relied

on a dictionary. Delić et al. used custom transformations and

rules [5]. Utvić created a parameter file TT11 for a TreeTagger

Boro Milovanović is a PhD student attending Intelligent Systems, an interdisciplinary program at the University of Belgrade, Studentski trg 1, 11000 Belgrade,

Serbia (e-mail: bmilovanovic@tesla.rcub.bg.ac.rs).
Ranka Stanković is with the Faculty of Mining and Geology, University of Belgrade, Djušina 7, 11000 Belgrade, Serbia (e-mail: ranka.stankovic@rgf.bg.ac.rs).

[6]. Later attempts relied on CRF (Conditional Random Fields)

[7-8] which is among supported technologies by NLTK and

will be used for training one of the taggers.

Introducing the dataset and the tagset will be done in the

Section 2. The creation of multiple taggers is presented in

Section 3. The results will be shown in Section 4 and briefly

discussed in Section 5. We will conclude with Section 6.

II. RESOURCES

An automated tagger is created by training on an annotated

dataset. These resources are extremely valuable because they

are expensive to produce. Dataset used in this paper is

composed of different annotated text collections (Table I). All

texts are either originally written in Serbian or translated to it.

1984 is a novel by George Orwell, part of MULTEXT-East

resources [9]. INTERA (Integrated European language data

Repository Area) is a project that produced multilingual corpus

on law, health and education [10]. Around the world in 80 days

is a novel by Jules Verne annotated during SEE-ERA.net

project [11]. ELTeC (European Literary Text Collection) is a

multilingual collection of the novels written between 1840 and

1920 [12]. ELTeC-srp is the Serbian part of the ELTeC.

History, Floods and Švejk are three short collections originated

during the same research [7]. History is made of several

chapters from a History textbook for elementary schools.

Floods is a newspaper collection reporting on floods in Serbia

in 2014. Švejk is an excerpt from a novel The Good Soldier

Schweik by Jaroslav Hašek.

TABLE I

DATASET STRUCTURE

Collection Tokens Words

1984 108,133 69,706

INTERA 65,767 55,725

Around the world in 80 days 7,382 5,970

History 5,277 4,230

ELTeC-srp 5,118 4,236

Floods 4,671 3,813

Švejk 3,298 2,678

In total there are 199,646 tokens. Among them, 31,139

tokens are unique. An example of tagged tokens is given in the

Part of Speech Tagging for Serbian language

using Natural Language Toolkit

Boro Milovanović, Ranka Stanković

AII 1.1.1

Table II. Every row contains 5 tab-separated values, that are

described below.
TABLE II

DATASET EXAMPLE ROWS

SentenceId Token N_POS UD_POS Lemma

5 velikog A:am ADJ velik

5 doba N:n NOUN doba

5 . SENT PUNCT .

There are 10,890 sentences in the data set, labeled by the

SentenceId, a first value in the row. Actual word that is tagged

is contained in the Token column. Its respective Lemma is in

the last column. There are two PoS tags for every token,

originated from two different tagsets. Tagset is a collection of

tags. UD_POS is a Universal Dependency tagset [13]. N_POS

is a tagset used in Serbian Morphology Dictionary [14]

expanded with a gender category. From the given data we

extracted token, N_POS and UD_POS tag. We stripped gender

from the N_POS and got a third tagset which we called

SMD_POS. All three tagsets are used in a further research.

There are 31139 unique tokens in the dataset and 17 UD PoS

categories: adjective (ADJ), adposition (ADP), adverb (ADV),

auxiliary verb (AUX), coordinating conjunction (CCONJ),

determiner (DET), interjection (INTJ), noun (N), numeral

(NUM), particle (PART), pronoun (PRON), proper noun

(PROPN), punctuation (PUNCT), subordinating conjunction

(SCONJ), symbol (SYM), verb (VERB) and other (X). The

tags are distributed as shown in the Table III.

TABLE III

PART-OF-SPEECH CATEGORY DISTRIBUTION AND MAPPING

UD_POS COUNT % N_POS

NOUN 42936 21.51% N, N:m, N:f, N:n

PUNCT 31477 15.77% PUNCT, SENT

VERB 20599 10.32% V, V:m, V:f, V:n

ADJ 18949 9.49% A, A:am, A:an, A:af

ADP 16540 8.28% PREP

AUX 13592 6.81% V, V:m, V:f, V:n

CCONJ 9374 4.70% CONJ

ADV 8998 4.51% ADV

DET 8599 4.31%
PRO, PRO:m,

PRO:f, PRO:n

PART 7976 4.00% PAR

SCONJ 6304 3.16% CONJ

PRON 5751 2.88%
PRO, PRO:m,

PRO:f, PRO:n

PROPN 3949 1.98% N, N:m, N:f, N:n

NUM 3634 1.82%
NUM, NUM:m,

NUM:f, NUM:n

X 858 0.43% X, PREF

INTJ 110 0.06% INT

Table III also shows mapping between UD_POS and N_POS

tags. In most cases it is one-to-one relation but there are some

differences between tagsets. N_POS doesn’t differentiate

between VERB and AUX, CCONJ and SCONJ, NOUN and

PROPN. On the other hand, it separates SENT from PUNCT

and PREF from X.

The most frequent word category is Noun, followed by a

Punctuation and a Verb. Cumulative distribution of PoS

categories is shown in Figure 1. First five categories account to

57% of all tokens. These numbers help us in creating the

taggers and interpreting their performance.

Fig. 1. Word PoS category cumulative distribution

 For a complete evaluation of the taggers, we need a data from

a different domain and origin. It will be exempted from the

training and validation phases and will be used at the end of the

evaluation phase to test generalization potential of the created

models. We took this data from a ParCoTrain dataset [15] and

mapped their tagset (which we called PCT_POS) to the

SMD_POS tagset, which is shown in Table IV. This is an

excerpt from a novel Enciklopedija Mrtvih [16], having 23,886

tokens in 946 sentences.

III. TAGGING

After the resources are ready, the process of tagging is made

simple with the help of NLTK. There are a plenty of tagger

models packaged in NLTK that can be trained. Every tagger

has an evaluation procedure that strips down the tags from the

given text, tags the text with the newly created tagger and

reports the accuracy on all tokens. This measure will be used

for comparing different taggers.

The simplest model in NLTK is Default tagger which tags

every token with one selected PoS category [17]. Because the

noun is by far the most represented PoS tag, the accuracy for

this model on all tokens will be exactly 21,51%. This is the

baseline tagger, point of reference for all other tagger models.

By applying more rules regarding the token format, a

RegExp tagger is produced. It is initialized with the list of regex

rules which are executed in the defined order. If one pattern

doesn’t match the given token, a next one is picked. At the end

of the chain, there is a rule which states that the word is of Noun

category – same as for Default tagger. Obviously, this model

AII 1.1.2

will perform better than the baseline tagger, but making the

right rules demands significant effort. We did not invest much

time in producing the rules, because we had not seen significant

improvements after adding new regular expressions.

TABLE IV

MAPPING BETWEEN SMD_POS AND PCT_POS TAGSETS

SMD_POS PCT_POS

N
NOM:com, NOM: col, NOM:nam,

NOM:num, NOM:approx

V VER, VER:aux

PRO
PRO:per, PRO:intr, PRO:dem, PRO:ind,

PRO:pos, PRO:rel, PRO:ref

NUM
NUM, NUM:car, NUM:ord, NUM:cal,

PRO:num

A
ADJ:comp, ADJ:sup, ADJ:intr, ADJ:dem,

ADJ:ind, ADJ:pos, ADJ:rel

ADV
ADV:comp, ADV:sup, ADV:intr,

ADV:rel, ADV:ind

CONJ CONJ:coor, CONJ:sub

PREP PREP

PAR PAR

INT INT

SENT SENT

PUNCT PONC, PONC:cit

X STR, ABR, LET, PAGE, ID

Affix tagger takes only prefixes or suffixes of fixed length in

consideration. It learns the most frequent tag in the dataset for

a given affix. If the word is shorter than 5 characters, tagger

returns tag “None”.

The most frequent PoS category is Noun but there are plenty

of other words with high frequency that are not nouns. This is

the idea for the Lookup tagger (implemented through

UnigramTagger class). It remembers the tags for the most

frequent words, while marking all the other words as None. A

number of the most frequent words for which the tags should

be stored is configurable. Figure 2 shows how accuracy of the

model measured on the whole dataset improves with the

number of the stored tags.

It is also seen that the best accuracy is achieved when the

tags are remembered for all the words. This is how Unigram

tagger behaves. It stores the most frequent PoS tag for all the

tokens and marks every appearance of that token with it.

The taggers mentioned above determined the tags solely on

the given token. N-gram tagger takes the context of the token

in consideration. Bigram tagger takes that token and the one

preceding it. Trigram tagger takes the two tokens before the

observed one. N-gram taggers are most effective when

combined with lower-level models.

While constructing the sequential tagger, it is possible to

define a back off tagger which will take over when the current

tagger is not able to determine a tag for a token (returning tag

1 Code for training and evaluation, example dataset and results are available at: https://github.com/bmilovanovic/pos-tagging-serbian.

None). This is the back off chain that we tested: Trigram –

Bigram – Affix – Unigram – Default.

Fig. 2. Dependence of the Lookup tagger accuracy on the number of the

stored tags

Aside embedded sequential tagger models available in the

nltk.tag.sequential package, there are custom made models

available in separate subpackages. CRF tagger is based on

Conditional Random Fields [18]. HMM tagger is based on

Hidden Markov Models [19]. Training on an averaged, one-

layer neural network produces Perceptron tagger [20]. TnT

tagger is short of Trigrams'n'Tags and it uses a second order

Markov model to produce tags for an input sequence [21]. We

declared the Unigram tagger as a back off tagger because TnT

does not automatically work with unseen words.

Any of the mentioned taggers can be improved with the help

of Brill tagger [22]. It uses a configurable set of rules to correct

the errors and improve the total accuracy. Best performance is

shown by a brill24 set of rules. We apply Brill to the top

performing models to try to increase the accuracy.

IV. RESULTS

All tagger models except Default and RegExp tagger are

created by training on an annotated dataset. We were training

on the 90% size of the original dataset size and measured

accuracy on a remaining 10% size with 10-fold evaluation1.

Results of the trained tagger models can be seen in Table V,

with the accuracy calculated as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑎𝑔𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑎𝑔𝑠
 (1)

The taggers are trained on an Intel® Core™ i7-8750H CPU

@ 2.20Ghz with 16 GB RAM. It can be seen from the table that

training all taggers for N_POS tagset took much more time due

to the added gender information. When the processor had a task

in parallel, other than training, the training times were twice as

high.

Accuracy scores, for all taggers, are very close between the

UD_POS and SMD_POS tagsets. This is expected because the

number of the tag categories and their distribution is similar.

AII 1.1.3

However, taggers performed remarkably worse for the N_POS

tagset. Information about the gender added complexity so

simpler taggers could not deal with it easily. However, the best

tagger models, CRF and Perceptron, kept the accuracy over 90

percent even with the gender information. We took these two

taggers to the additional evaluation.

TABLE V

ACCURACY OF TAGGERS FOR EACH TAGSET

Tagger UD_POS SMD_POS N_POS

Default 21.50 23.50 12.15

RegExp 23.20 25.33 13.06

Affix 88.34 87.12 81.64

Lookup 43.26 40.87 40.70

Unigram 90.56 88.79 84.87

Bigram 91.56 90.17 86.58

Trigram 91.50 90.01 86.38

CRF 93.77 93.72 90.16

HMM 44.28 49.80 45.58

Perceptron 95.61 95.76 92.52

TnT 90.83 90.51 86.95

Training Time 1143s 1343s 3074s

Useful tagger model is one which generalizes well to the text

from the other domains. That’s why we tested our best taggers

on the text that stayed out of the training and validation phases.

Results can be seen in Figure 3.

Fig. 3. Accuracy of the CRF and Perceptron variants on the test and unseen

data

Taggers shown in the Figure 3 are trained on the SMD_POS

tagset because it was the most like the one in unseen data so we

could map between two easily. CRF and Perceptron taggers

saw a small improvement with the corrections from Brill

tagger. However, all four models saw a fall of about 8% in

accuracy for the unseen data.

For an additional insight into the performance of the taggers,

we calculate precision, recall and F1 at a tag level for the

Perceptron + Brill tagger, as followed

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝

 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛

 (3)

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

The scores are calculated by iterating over all tokens,

comparing the predicted tag versus actual tag and then

aggregating the cases. True positive (𝑇𝑝) is when these tags are

identical. False positive (𝐹𝑝) is the tag that is predicted but is

different than actual tag. The actual tag, that is not predicted

correctly, is determined as false negative (𝐹𝑛). Table VI

displays the results.

TABLE VI

TAG-LEVEL METRICS FOR PERCEPTRON + BRILL TAGGER

EVALUATED ON UNSEEN DATA

SMD_POS Precision Recall F1

N 0.91 0.99 0.92

PUNCT 0.99 0.99 0.99

V 0.91 0.93 0.92

A 0.79 0.53 0.64

PREP 0.99 0.98 0.98

CONJ 0.91 0.93 0.92

ADV 0.80 0.68 0.73

PRO 0.53 0.91 0.67

PAR 0.75 0.93 0.83

NUM 0.63 0.65 0.64

SENT 1.00 0.99 1.00

X 0.53 0.04 0.07

INTJ 0.38 0.33 0.35

Total 0.87 0.87 0.87

Many tags have low F1 scores, with X having the lowest one.

Recall for X is only 0.04 which means that there are a lot of

tokens with actual tag X, that the tagger did not predict as

such. However, overall accuracy (87.31) is higher than most

tags have because the precision is high for N and PUNCT

tags which are the most frequent.

V. DISCUSSION

Looking again at the Table VI, we can notice fluctuation in

performance between various tags. This is probably due to the

differences in the tagging practice for the training and

evaluation sets. In the process of preparing data, there are

multiple tagsets and annotators. This is too many factors for an

automated tagger to have the performance near maximum.

Although no research is conducted using different NLP tool

and the exact same resources, there is an evidence of better

AII 1.1.4

performance in PoS tagging a contemporary Serbian language

[23]. Their performance on unseen data shows 0.88 precision

with Spacy tagger and 0.93 with TreeTagger19 while the best

tagger produced in this research achieves 0.87. The

technologies in this research are not able to produce us a

generalized, multi-purpose, all-around PoS tagger that can be a

standard for a Serbian language.

Best performance in this research is achieved with the

Perceptron tagger, a neural network which is more than a

decade old. Since then, a breakthrough with deep learning has

happened, so there’s a strong belief that further improvements

can be made with the latest neural network models [24].

However, there is a doubt if these models, because of their

complexity, will ever be available in NLTK.

VI. CONCLUSION

We used NLTK, a Python library, to create 11 automated

PoS taggers for a contemporary Serbian language. Models were

trained on 180,000 tokens and evaluated on 20,000 tokens. The

top performing models were improved with the help of Brill

tagger and then tested on both familiar and an unfamiliar text.

Best performance is shown by the Perceptron tagger: 92,52 –

95,76% accuracy for the different tagsets.

ACKNOWLEDGMENT

B.M. would like to thank BSc Gorana Marković for

proofreading the manuscript.

REFERENCES

[1] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding,” Oct.

2018
[2] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,

“ALBERT: A Lite BERT for Self-supervised Learning of Language

Representations,” Feb. 2020
[3] Z. Zhang, J. Yang, and H. Zhao, “Retrospective Reader for Machine

Reading Comprehension,” Jan. 2020

[4] B. Li, N. Jiang, J. Sham, H. Shi, and H. Fazal, “Real-world
Conversational AI for Hotel Bookings,” Proc. International Conference

on Artificial Intelligence for Industries, Laguna Hills, California, USA,

Sep. 2019
[5] V. Delić, M. Sečujski, and A. Kupusinac, “Transformation-based part-of-

speech tagging for Serbian language,” Proc. 8th WSEAS International
Conference on Computational intelligence, man-machine systems and

cybernetics, Tenerife, Spain, Dec. 2009

[6] M. Utvić, “Annotating the Corpus of Contemporary Serbian,”
INFOtheca, vol. 12 no. 2 pp 36a-47a, Dec. 2011

[7] M. Constant, C. Krstev, and D. Vitas “Lexical Analysis of Serbian with

Conditional Random Fields and Large-Coverage Finite-State Resources”,

Proc. 7th Language and Technology Conference (LTC), Poznan, Poland,

Nov. 2015

[8] N. Ljubešić, F. Klubička, Ž. Agić, and I. Jazbec, “New inflectional
lexicons and training corpora for improved morphosyntactic annotation

of Croatian and Serbian“, Proc. 10th International Conference on

Language Resources and Evaluation (LREC’16) pp. 4264-4270,
Portorož, Slovenia, May 2016

[9] C. Krstev, D. Vitas, and T. Erjavec, “MorphoSyntactic Descriptions in

MULTEXT-East | the Case of Serbian,” Informatica, vol. 28 no. 4 pp.
431–436, Dec. 2004.

[10] M. Gavrilidou, P. Labropoulou, S. Piperidis, V. Giouli, N. Calzolari, M.

Monachini, C. Soria, and K. Choukri, “Language Resources Production
Models: the Case of the INTERA Multilingual Corpus and

Terminology,” Proc. Fifth International Conference on Language

Resources and Evaluation (LREC’06), Genoa, Italy, May 2006
[11] D. l. Tufis, S. Koeva, T. Erjavec, M. Gavrilidou, and C. Krstev, (2009).

“Building Language Resources and Translation Models for Machine

Translation focused on South Slavic and Balkan Languages”. Scientific
results of the SEE-ERA.NET pilot joint call, pp 5, Oct. 2009

[12] Distant Reading for European Literary History, a COST Action funded

by the Horizon 2020 Framework. https://www.distant-reading.net/, Mar.
2020

[13] M. d. Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter, J. Nivre,

and C. D. Manning, “Universal Dependencies: A cross-linguistic
typology,” Proc. Ninth International Conference on Language Resources

and Evaluation (LREC'14), Reykjavik, Iceland, May 2014

[14] C. Krstev and D. Vitas, “Serbian Morphological Dictionary – SMD,”
University of Belgrade, HLT Group and Jerteh, Lexical resource, 2.0,

2015

[15] A. Balvet, D. Stošić, and A. Miletić, (2014). TALC-Sef a Manually-
revised POS-Tagged Literary Corpus in Serbian, English and French.

Proceedings of the Ninth International Conference on Language

Resources and Evaluation (LREC'14), pp. 4105-4110, Reykjavik,

Iceland. May 2014

[16] D. Kiš, Enciklopedija mrtvih, Beograd, Jugoslavija, Globus, 1983

[17] S. Bird, E. Klein, and E. Loper, “Automatic Tagging” in Natural
Language Processing with Python, Sebastopol, California, USA:

O’Reilly, 2009, ch. 5, sec. 4, pp. 198

[18] T. Peng and M. Korobov, pythoncrfsuite. https://python-
crfsuite.readthedocs.io, 2014

[19] X. Huang, A. Acero, H. Hon, “Hidden Markov Models” in Spoken

Language Processing, Upper Saddle River, New Jersey: USA, ch. 8, sec.
2, pp. 378-391

[20] H. Daume III, “Frustratingly Easy Domain Adaptation,” Proc. 45th

Annual Meeting of the Association for Computational Linguistics,
Prague, Czech Republic, June 2007

[21] T. Brant, “A Statistical Part-of-Speech Tagger,” Proc. Sixth Applied

Natural Language Processing Conference, Seattle, Washington, USA,
2000

[22] E. Brill, “A simple rule-based part of speech tagger”, Proc. Third

conference on Applied natural language processing (ANLC '92),

Stroudsburg, Pennsylvania, USA, Mar. 1992.

[23] R. Stanković, B. Šandrih, C. Krstev, M. Utvić, and M. Škorić, “Machine
Learning and Deep Neural Network-Based Lemmatization and

Morphosyntactic Tagging for Serbian,” Proc. International Conference

on Language Resources and Evaluation, pp. 3954‑3962, May 2020
[24] A. Akbik, D. Blythe, and R. Vollgraf, “Contextual String Embeddings for

Sequence Labeling,” Proc. 27th International Conference on

Computational Linguistics, Santa Fe, New Mexico, USA Aug. 2018

AII 1.1.5



Abstract— Motion detection in color or thermal imaging has

become one of the major components of surveillance and

monitoring systems. Since thermal images are usually presented

as gray scale images, the need for smart assistance in surveillance

for the operators has risen. A common way of emphasizing

detected motion on an image is pseudo coloring. In this paper, an

application for pseudo-coloring of thermal image areas with

detected motion is provided in order to give an adequate

visualization and draw attention of the operator to the moving

objects. For motion detection SURF (Speeded Up Robust

Features) detector key points are used along with Optical flow

estimation (Lucas-Kanade method). Every detected region is

presented by its center found by motion detection on two

successive frames. Complete object motion detection and

visualization is obtained using several more image processing

techniques: morphological image processing, image segmentation

and pseudo-coloring. Results are presented on the experimental

dataset made for this purpose only.

Index Terms — motion detection; thermal image; SURF;

optical flow; pseudo-coloring.

I. INTRODUCTION

Motion detection has become widely populated in military
and civilian surveillance systems which has become critical

for the rapid response to a certain event. Safety is one of the

major problems in the 21st century, so developing this type of

technology leaves many options for improvement in future

use. Typical applications of motion detection are: security

systems, vehicle navigation, video image reconstruction,

computer vision etc. Moving object detection is the core and

fundamental task of every surveillance system which is the
focus of this paper.

Motion analysis is one of the most challenging tasks in

digital video processing. The main challenge is to detect

moving objects competently in real time. The key is to follow

the change in the frames and to extract corresponding regions

of the moving object and the object itself as quickly and

efficiently as possible. This process becomes increasingly

complicated and difficult with the presence of noise, complex

backgrounds, variations in illumination, and the shadows of

Miloš Petrović is with the School of Electrical Engineering, University of

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

petrovic.milos@ etf.bg.ac.rs).

Nataša Vlahović is with the Vlatacom Research and Development

Institute, Bulevar Milutina Milankovića 5, 11070 Belgrade, Serbia (e-mail:

natasa.vlahovic@vlatacom.com).

Miroslav Perić is with the Vlatacom Research and Development Institute,

Bulevar Milutina Milankovića 5, 11070 Belgrade, Serbia (e-mail:

miroslav.peric@vlatacom.com).

static and moving objects. In this paper, we propose a

software image processing approach for motion detection on

thermal images by retaining only the moving object of

interest.

The main goal of this paper is to give an overall software

image processing approach for appropriate visualization of

detected motion. The rest of this paper is categorized as

follows. Section 2 gives the description of the proposed object

motion detection and visualization application. Section 3

shows the experimental results of our proposed system.

Section 4 concludes this paper. The last section includes

references.

II. THE METHOD

A flowchart of the algorithm for the proposed method is

given in the Fig. 1. Brief description of each step of motion

estimation process in the figure is discussed in the following

section.

Fig 1. Flowchart of the system for moving object detection and visualization

Visualization of Moving Objects in Thermal

Image

Miloš Petrović, Nataša Vlahović and Miroslav Perić, Member, IEEE

AII 1.3.1

Static thermal camera is used to capture frames that are

being processed. In order to avoid occlusions, multiple

different scenes are recorded. Frames are taken by Vlatacom

Research and Development Institute Multi-sensor imaging

system vMSIS 2 – CHD - C1200 [2]. The basic idea of Multi-

sensor system is to combine data from different types of

sensors (thermal sensor [3], color cameras, low light cameras

[4], SWIR cameras [5], laser range finders [6], etc.).

Dedicated software for image preprocessing effectively filters
vibrations and rain which is the key component of external

surveillance systems. This system has a pan/tilt platform and

operates in enhanced temperature range (Fig. 2).

Fig. 2. Vlatacom vMSIS 2 – CHD – C1200

The SURF (Speeded Up Robust Features) algorithm [7] is

used to extract the feature points from two consecutive
frames. SURF is a local feature detector and descriptor. The

role of the descriptors is to produce a unique description of a

feature calculated from the area surrounding the point of

interest. It can be used for tasks such as object recognition,

image registration, classification etc. It is partly inspired by

the scale-invariant feature transform (SIFT) descriptor. After

SURF points extraction and matching, fixed threshold method

is adopted to exclude the matching points on the targets that

were not moving, the least square method is employed to

solve the global motion parameters. Advantage of using

SURF is reducing the number of points algorithm should be
applied on which reduces computational cost compared to the

algorithm applied on the whole image grid points.

Optical flow presents an apparent change of a moving

object’s location or deformation between frames [8,9]. Its
estimation is used in many applications. Optical flow

estimation yields a two-dimensional vector and motion field

that represents velocities and directions of each SURF point

of an image sequence. Lucas-Kanade algorithm [10] has been

chosen for the estimation of Optical flow because of its high

accuracy and its basic principle that uses the change of

intensity between two consecutive video frames for motion

detection. It assumes that the flow is essentially constant in a
local neighborhood of the pixel under consideration, and

solves the basic optical flow equations for all the pixels in that

neighborhood by the least square criterion. Lucas-Kanade

optical flow method provides visual representation of area

over the moving object and the relative speed intensity of

moving objects. Furthermore, points with low or zero speed

vector intensity were excluded from following calculations

and are considered as a part of the background which makes

the algorithm more efficient.

Morphological image processing (dilation) with square

structural element achieves approximate object region

detection [11].

Additional enhancement of the whole process of object

detection and visualization application is achieved using

difference in brightness between two frames in order to match

the actual object border more accurately. Precise object region

detection is achieved through further morphological image

processing (erosion and dilation) with square and disk

structural elements of different sizes.

In combination with image segmentation with multiple

thresholds [11] and pseudo-coloring (hot color map)

appropriate visualization is provided. A pseudo-color image is

a color image derived from a grayscale image by mapping
each pixel intensity value to a color according to a table or a

function. It can make some details of interest more visible.

III. EXPERIMENTAL RESULTS

We implemented all of the mentioned algorithm steps (Fig

1.) in Matlab. In order to illustrate proposed algorithm one of

the most suitable scenes is selected and Fig. 3 shows two

consecutive frames extracted from video made by static

thermal camera.

Fig. 3. Two consecutive frames recorded by vMSIS 2 – CHD – C1200

In Figure 4 SURF features are extracted and matched from

two consecutive frames.

Fig. 4. Extracted and matched SURF features from two consecutive frames

AII 1.3.2

 Optical flow (Lucas-Kanade method) makes use of the flow

vectors of moving objects over time to detect moving regions

in an image which is shown in Fig. 5.

Fig. 5. Optical flow estimation based on SURF points

 The following step forms a binary image where remaining

SURF points, that with the highest certainty represent moving

objects, were white dots on black background. The result of

morphological image processing dilation with square

structural element is shown in Fig. 6.

Fig. 6. Morphological image processing - dilation with square stracturale

element

Aditional precision in object detection through frames

brightnes difference alongside with morphological image

processing – erosion followed by dilation is presented in Fig.

7.

Fig. 7. Motion region enhancement

Image segmentation is employed in order to emphasize

objects of interest and separate them from the background

which is illustrated in Fig. 8.

Fig. 8. Image segmentation on extracted regions

 Fig. 9 shows the result of pseudo-coloring of the objects

that are emphasized with the help of image segmentation.

Fig. 9. Pseudo-color image on segmented region of interest

 Final result of the proposed procedure of moving object

detection and visulisation is reported in the Fig. 10.

Fig 10. Motion detection and visualization – regions of interest clearly

differentiated from the background

AII 1.3.3

IV. CONCLUSION

This paper presents a design of a system for moving object

detection in thermal image sequences. The proposed system

employs several methods: extracting and matching SURF,

estimating Optical flow by Lucas-Kanade method in reduced
number of SURF points, morphological processing,

segmentation and pseudo-coloring. Speeded Up Robust

Features, as the most suitable to detect moving objects by the

intensity changes of frames, are used as feature detectors. The

combination of morphological erosion and dilation extracts

significant features of region shapes from binary images after

which blob analysis introduces these shapes to the next step as

foregrounds (using pseudo-coloring on mentioned blobs).

The detection performances are verified through the

experiments based on the data using the actual footage of

vehicles.

For the future work, an adaptive threshold filtering should

be applied on inadequately matched SURF points and points

with low velocity estimated by Optical flow, which would

make this system more efficient. Also the algorithm can be

developed to detect and identify overlapping objects and

occlusion or transparencies during object tracking. Further

research will be focused on developing a color based tracking

method which can deal with both partial and complete

occlusions effectively.

REFERENCES

[1] Ester Martinez – Martin, Angel P. del Pobil, “Robust Motion Detection

in Real-Life Scenarios” 1st edition, Springer, 2012.

[2] Vlatacom Research and Development Institute “Electro optical system

vMSIS2-CHD-C1200”, product brochure, 2016, available online,

accessed on: https://1c53710f-cd70-4b75-9db4-

5022cd1b5639.filesusr.com/ugd/510d2b_b84a980cf8424b3e90909639d

928edd4.pdf, Accessed 2020-05-20.

[3] Helmut Budzier, Gerald Gerlach, “Thermal Infrared Sensors: Theory,

Optimization and Practice”, Wiley, 1st edition, 2011.

[4] Takao Kuroda, “Essential Principles of Image Sensors”, CRC Press 1st

edition, 2014.

[5] Dragana Peric, Branko Livada, “Analysis of SWIR Imagers Application

in Electro-Optical Systems”, presented at conference IcETRAN 2017, at

Kladovo, Serbia.

[6] Narain Mansharamani, “Laser Ranging Techniques”, BookSurge

Publishing, 2018.

[7] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, ”Speeded-up robust

features (SURF)”, Comput. Vis. Image Underst., 110(3), 346-359,

2008.

[8] Burton, Andrew, Radford, John “Thinking in Perspective: Critical

Essays in the Study of Thought Processes”. Routledge. ISBN 978-0-

416-85840-2, 1987.

[9] Warren, David H.; Strelow, Edward R. “Electronic Spatial Sensing for

the Blind: Contributions from Perception”. Springer. ISBN 978-90-247-

2689-9, 1985.

[10] B. D. Lucas and T. Kanade, “An iterative image registration technique

with an application to stereo vision”, 1981.

[11] Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, 4th

edition, Pearson/Prentice Hall, 2018.

AII 1.3.4

https://1c53710f-cd70-4b75-9db4-5022cd1b5639.filesusr.com/ugd/510d2b_b84a980cf8424b3e90909639d928edd4.pdf
https://1c53710f-cd70-4b75-9db4-5022cd1b5639.filesusr.com/ugd/510d2b_b84a980cf8424b3e90909639d928edd4.pdf
https://1c53710f-cd70-4b75-9db4-5022cd1b5639.filesusr.com/ugd/510d2b_b84a980cf8424b3e90909639d928edd4.pdf
https://books.google.com/books?id=CSgOAAAAQAAJ&pg=PA77&dq=%22optical+flow%22
https://books.google.com/books?id=CSgOAAAAQAAJ&pg=PA77&dq=%22optical+flow%22
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-416-85840-2
https://en.wikipedia.org/wiki/Special:BookSources/978-0-416-85840-2
https://books.google.com/books?id=-I_Hazgqx8QC&pg=PA414&dq=%22optical+flow%22
https://books.google.com/books?id=-I_Hazgqx8QC&pg=PA414&dq=%22optical+flow%22
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-90-247-2689-9
https://en.wikipedia.org/wiki/Special:BookSources/978-90-247-2689-9
http://www-cse.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf
http://www-cse.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf



Abstract — The paper presents an automatic speech

recognition (ASR) system for dictating medical findings,

developed by AlfaNum – Speech Technologies Ltd for the

Pension and Disability Insurance Fund of the Republic of Serbia.

The system is developed in a form of a distributed client-server

architecture. The training of acoustic models is performed using

a “chain” sub-sampled deep time-delay neural network (TDNN),

while language models training is conducted using recurrent

neural networks (RNNs), composed of “relu-renorm” layers

followed by long short-term memory projection (LSTMP)

components. The client application sends recorded user data to

the server, where recognition of speech samples is performed in

real time. The data is stored locally as well as in the central

database, and can be exported in an appropriate form upon

request. Recognition accuracy of 97% on a vocabulary of up to

50000 words is achieved.

Index Terms—Automatic speech recognition, dictation,

medical, Serbian, Latin.

I. INTRODUCTION

AUTOMATIC speech recognition is a widely used

technology for converting spoken words by users into text,

i.e., for creating the transcription of the given conversation.

Many human-machine interaction systems exist in a variety of

different areas. ASR applications include dictation systems,

voice assistant applications, smart homes, call centres, tools

for aiding people with disabilities, and so on. As for the

Serbian language, the state-of-the-art systems are constantly

being upgraded. The recent research was mostly directed

towards language modelling, because the previous systems

had a lot of trouble dealing with the inflectivity of the Serbian

language (i.e., having different cases, grammatical numbers or

grammatical genders for words, which are all differentiated

only by short word suffixes). The state-of-the-art Serbian

language models involve deep recurrent neural networks that

use embedding vectors as word representations and

incorporate sub-word features, as well as additional lexical

and morphological features for each word, on top of the usual

Branislav Popović is with the Department for Power, Electronic and

Telecommunication Engineering, Faculty of Technical Sciences, University

of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia, Department

for Music Production and Sound Design, Academy of Arts, Alfa BK

University, Nemanjina 28, 11000 Belgrade, Serbia, and Computer

Programming Agency Code85 Odžaci, Železnička 51, 25250 Odžaci, Serbia

(phone: +381613207989; e-mail: bpopovic@uns.ac.rs).

Edvin Pakoci is with AlfaNum Speech Technologies, Bulevar vojvode

Stepe 40, 21000 Novi Sad, Serbia (e-mail: edvin.pakoci@alfanum.co.rs).

Darko Pekar is with AlfaNum Speech Technologies, Bulevar vojvode

Stepe 40, 21000 Novi Sad, Serbia (e:mail: darko.pekar@alfanum.co.rs).

“1-of-N” vector representation of words [1]-[2]. The state-of-

the-art acoustic models, on the other hand, for several years

now involve different variations of purely sequence-trained

deep time-delay neural networks with subsampling,

specifically designed to better model long temporal contexts

[3]-[4]. These acoustic models also include accent-specific

vowel models, Mel-frequency cepstral coefficients (MFCCs),

pitch features and speaker identity vectors, or i-vectors [5], for

the purpose of adaptation to different speakers and channels.

The need for training an ASR system for dictation or

transcription in the medical field is not a new need – some

solutions were suggested back at the end of the 20th century

[6]. Most of the suggested uses include automatic speech

recognition and a following transcriptionist review, and

sometimes even a final physician review [7]. The main goal is

to minimize clinically relevant errors, and provide reasonable

general quality in practice [7]-[8]. Depending on the use

(acoustic and linguistic complexity and variability, expected

vocabulary size, etc.), different accuracy rates are reported, as

well as different changes in department productivity.

Sometimes there are changes for the worse too, as some

doctors found that even though automatic speech recognition

helps the overall department productivity (high gains), the

length of time it takes to finish the dictation and produce the

final report often increases [9]-[10]. Generally, physician

surveys usually do find that most of them agree that the usage

of ASR technology is a good idea, even though only a part of

them (e.g. about half) report time savings [11].

The system presented in this paper is so far the only

medical ASR system in existence for the Serbian language. It

was created using the best available acoustic and language

models mentioned above, as well as additional textual medical

data obtained directly from the eventual user of the system,

the Serbian Pension and Disability Insurance Fund. The

system is implemented using a classic client-server

architecture. The client application was specifically developed

for this purpose from scratch, as it needed to fulfil very

specific requirements for the Fund as well as to provide

additional functionalities, like creating a final report in the

specific legal form and exporting it to the central database.

The remainder of this paper is organized as follows. Section

II discusses the system architecture, including the applied

techniques and the used training databases. Section III is

about the client application interface. Section IV describes the

testing procedure and the accuracy of the system. Finally,

section V gives a short recapitulation and conclusion.

Automatic Speech Recognition System for

Dictating Medical Findings

Branislav Popović, Member, IEEE, Edvin Pakoci and Darko Pekar

AII 1.4.1

II. SYSTEM ARCHITECTURE

The system is implemented in the form of a standard client-

server architecture. Speech samples are sent to the ASR server

to be processed and recognized. Voice activity detection is

carried out implicitly, based on the most probable phoneme

sequence for a given frame and the calculated signal energy.

The recognition results are conveyed to the client in real time.

A. Server Side

The server recognizes chunks of audio samples. Audio

content recognition is enabled for up to 15 users in parallel.

Different grammars (i.e., language models) are provided,

depending on the currently chosen textual field (domain of

interaction), e.g., one of the fields allows dictation of medical

findings in Latin, which is why a special grammar had to be

trained for that specific purpose.

The baseline model is a “chain” sub-sampled time-delay

deep neural network. The network is trained using cross-

entropy training and a sequence-level objective function [3],

[4], [12], while the training procedure consists of the

pre-DNN and the DNN phase. For the pre-DNN phase, static

features, including 14 Mel-frequency cepstral coefficients

(MFCCs), energy and 3 pitch-related features – probability of

voicing, log-pitch and delta-pitch, as well as their first and

second order derivatives are extracted (the final feature vector

is 54-dimensional). This phase consists of an initial flat-start

monophone HMM-GMM training, triphone HMM-GMM

training (targeting 3500 HMM states and 35000 Gaussians

both for the first and second triphone pass), and speaker

adaptive training (SAT, targeting the same model

complexity). The final pre-DNN HMM-GMM model is used

to provide input data alignments for the deep neural network

(DNN) training. For this phase, 40 high-resolution MFCCs

together with the 3 previously described pitch-based features,

and a 100-dimensional speaker identity vector (i-vector) are

used as features, producing a 143 dimensional feature vector.

The TDNN consists of 10 hidden layers, each of them

containing 1024 neurons. The lower layers are trained using

temporal context windows that include the preceding, the

current and the following frame. The training of higher layers

is conducted using also windows of 3 frames, but with 3-

frame-long gaps between them. Acoustic models are trained

using the recently expanded speech database for the Serbian

language. The database consists of audio book recordings

(recorded in a studio environment, spoken by professional

speakers, 32 male and 64 female speakers, 168 hours of data),

radio talk show recordings (179 hours of data, 21 male and 14

female speakers) as well as mobile phone recordings from

interactions between humans and machines (requests,

questions, and other inquiries, 61 hours of data, 169 male and

181 female speakers). Audio data is sampled at 16 kHz, 16

bits per sample, mono PCM. The number of speakers is

increased artificially, using various combinations of speech

speed and pitch modifications for similarly long chunks of

data for each speaker which had enough data (398 and 420

distinct sub-speakers are obtained for audio books and radio

shows, respectively, while the mobile phone speakers didn’t

need to be broken up). A version of the original database with

a predetermined amount of added background noise was also

created and incorporated into the acoustic model training. The

noise recordings varied in type, from traffic and “cocktail

party” noises, to construction noises, wind noises, etc [1],

[12].

The language models are trained using previously

anonymized real-life document examples from the Serbian

Pension and Disability Fund and additional Serbian corpuses

in the administrative, scientific, literary and journalistic

functional styles [1], [12]. Recurrent neural network language

models (RNNLMs) are used for this purpose. The network

consists of 3 layers with Rectified Linear Unit (ReLU)

activation functions, followed by a renormalization block (i.e.,

“relu-renorm”), each one containing 512 embedded neurons.

LSTMP layers are injected between consecutive relu-renorm

layers, while both recurrent and non-recurrent projection

dimensions are set to 256. Max n-gram order is set to 4,

therefore approximating lattice rescoring by merging histories

in the lattice if they share the same 4-gram history, which

prevents the lattice from exploding exponentially. The

language model training is run for 30 epochs – 210 iterations

based on the amount of input data. The best iteration is

calculated based on the objective function value on the

previously extracted validation dataset, which does not take a

part in RNNLM training.

After successful initialization and authorization, the ASR

server is ready to communicate with client applications.

During its operation, the ASR server will print out various

information in its console, such as recognized users’

commands, speech detection times, confidence scores, etc.

Alternatively, the ASR server can also be started as a service,

without displaying the console. All the information can also

be written to log files.

B. Client Side

The client interface contains several cards for the header

and all the 7 standardized textual fields from the Pension and

Disability Insurance Fund legal form:

1. Personal data

2. Significant allegations of the compliant

3. Medical history, physical, laboratory and other

findings

4. Diagnosis (in Latin)

5. Assessment and opinion on disputable issues, as well

as opinion on significant facts and circumstances not

considered in the previous proceedings

6. Assessment and opinion on the correctness of findings,

opinions and evaluation of expert authorities in the first

instance proceedings

7. Explanation of the assessment and opinion on the

correctness of the findings, opinions and evaluation of

the expert authority in the first instance proceedings

Switching among the cards can be done via the appropriate

keyboard shortcut, or by clicking on the desired card name

(below the application toolbar). In addition to the voice input,

all standard options for working with text are enabled, such as

AII 1.4.2

selecting, copying, cutting and pasting the text, changing the

font size, bolding the text, as well as its conversion to the

appropriate format (upper, lower, sentence or title case letters

as well as letter spacing). Entries are saved automatically in

the predefined folder on a local machine, as well as in the

central database on a remote server. Separate subfolder is

created for each of the cards, containing textual data in rich

text format (RTF), together with the corresponding audio files

(speech samples sent to the ASR server for recognition) and

additional information about recognized words (JSON file).

When saving the document, the application stores data about

the medical worker (name, title, affiliation and codes) who is

the current user, and creates the appropriate folder structure.

This data will be linked with the username specified in the

application and automatically withdrawn from the database

each time a user opens the application. The interface of the

client application is described in more details in the following

section.

III. APPLICATION INTERFACE

When the application is started, a username needs to be

selected by choosing the appropriate name from the drop-

down list presented in Fig. 1, or by entering a new username.

The drop-down list is formed based on the entries previously

stored in the remote database as well as the usage history of

the concrete application. This name is used to identify the user

communicating with the ASR server, in order to allow

adaptation to the voice of a particular speaker (by linking its

adaptation parameters to the selected username), therefore

allowing multiple users to use the same client application with

their own parameters. Speaker adaptation allows the speech

recognizer to adapt the acoustic model parameters for a

specific user, regardless of the gender and tone of the

speaker's voice. Adaptation for any speaker should be

conducted before the first recognition task. During adaptation,

the user utters a predefined sequence lasting only a few

seconds (a sequence of numbers in our case specifically, but

other sequences would work as well). In addition to the

acoustic characteristics of the voice, the signal energy level is

also recorded, as well as the confidence measure for the

recognized words (based on frame-level acoustic scores in the

decoder). These two additional parameters are used for voice

activity detection in the provided audio.

Graphical user interface of the client application is shown

in Fig. 2 (personal data) and Fig. 3 (diagnosis). The

recognition process on the ASR server begins by clicking on

the "Start dictation" button ("Započni diktiranje" in Serbian),

or by selecting the appropriate keyboard shortcut. When

initiating recognition, it is important to be known which card

is currently selected, so that recognition could be initiated

with the appropriated grammar (i.e., language model), trained

for the specific domain of interaction. If another card is

clicked during recognition, the ASR server is automatically

sent information to change the active language model to the

one associated with the newly selected card, without having to

manually stop the recognition and then restart. Recorded

audio samples are sent in chunks to the ASR server, in order

to enable online recognition – processing of samples begins as

soon as the server accumulates enough data, and before the

end of the signal, therefore allowing recognition in real time.

The user ends the recognition by pressing the same button

(whose text has now been changed to "End recognition"

("Kraj diktiranja")).

In addition to the final recognition result, the ASR server

also allows continuous recognition – partial recognition

results are provided during processing, i.e., upon voice

activity detection (VAD), although these results can be

modified by the decoder as new samples arrive. The final

result for the previous VAD segment is determined after each

long enough pause in speech (about one second or more).

Both alphabets (Cyrillic and Latin) are supported, both during

dictation and typing.

The client application supports a wide range of punctuation

marks that are automatically converted from words during

result printing, e.g., period, comma, colon, semicolon,

question mark, exclamation mark, hyphen or dash, open and

closed parenthesis, quotation marks, slashes, etc. – provided

that the “period” word (i.e., “tačka” in Serbian) is converted

only if recognized at the end of the speech segment.

Automatic conversion of recognized digits, base and ordinal

numbers, as well as dates is also supported. For example, the

sequence “sedmi oktobar hiljadu devetsto osamdeset prve”

(Eng. “the seventh of October nineteen eighty-one”) will be

converted into “7.10.1981.”.

Numbers containing a decimal point can also be dictated.

Furthermore, ordinal numbers (from “first” to “hundredth”)

followed by a slash are converted into a Roman numeral – this

is used particularly in sequences such as “po Glavi drugoj

kroz B” (Eng. “according to Chapter second slash B”), which

will be converted into “po Glavi II/B” (Eng. “according to

Chapter II/B”).

 Appropriate keywords can be used in combination with

Fig. 1. Username selection screen

AII 1.4.3

numbers. The word “rimski” (Eng. “Roman”) in front of a

number between 1 and 100 (either cardinal or ordinal) will

make that number be written as a Roman numeral, and the

command “slovima” (Eng. “in text”) means that the number

will be written in textual form, inside parenthesis (this needs

to be done next to percentages in the Fund documents). It

should also be noted that the word “procenat” or “procenata”

(Eng. “percent”) is always converted into the “%” sign, and

the words “plus”, “minus” and “jednako” (Eng. “equals”) to

the appropriate symbols “+”, “-” and “=”, respectively, if

found next to a number. Several measurement units (meters,

centimetres, millimetres, kilograms, grams, milligrams,

millilitres, millimetres of mercury, per minute, per second, per

litre, per square meter), are also automatically converted when

recognized. Special keywords are defined for the dictation of

secondary textual fields on cards 4 and 7 – “šifra dijagnoze”

(Eng. “diagnosis code”), “invalidnost” (Eng. “disability”),

“telesno oštećenje” (Eng. “physical impairment”), “potreba za

pomoći i negom” (Eng. “need for help and care”),

“nesposobnost” (Eng. “incapacity”) and “kontrolni pregled”

(Eng. “control examination”), after which one or two digits

should be pronounced, or a two-digit number. A smaller set of

commands such as “obriši reč/rečenicu/paragraf” (Eng.

“delete word/sentence/paragraph”) for correction purposes

(these have to be said as a separate speech segment) and “novi

red” (Eng. “new line”, if said at the end of a speech segment)

are also supported. There is also the “kraj diktiranja” (Eng.

“end dictation”) command, equivalent to clicking on the “End

dictation” button – the current recording ends and all

recognition results are returned to the client application.

All acronyms can be pronounced letter by letter (“a b c d” –

Serbian Cyrillic pronunciation), or in the “singing” style, i.e.

“a be ce de” (Serbian Latin pronunciation), and if they contain

a vowel, they can be pronounced like a regular word (for

example, the acronym “VOD” can be pronounced as “v o d”,

“ve o de”, or simply “vod”). For some predefined acronyms

and abbreviations, it is possible to pronounce whole words

and still have the result written as an abbreviation, e.g.

“fundus oculi sinistri” will be converted to “FOS”, while

“Klinički centar” (Eng. “Clinical centre”) will be converted

into “KC”.

IV. SYSTEM ACCURACY

The testing of the application was conducted in a relatively

controlled environment (low overall and background noise),

with high-quality microphones and previously prepared texts,

at a time when the testers were already familiar with how to

use the application. During testing, words were spoken at a

normal rate, well-articulated and not overly stressed (i.e.,

neutral speech, no emotions in the voice). Speech speed was

between 12 and 15 characters per second – neither too fast,

nor too slow. Depending on the currently selected card,

recognition is possible in Serbian or Latin, in real time. The

recognition accuracy of about 97% on a vocabulary of about

50000 words is achieved in all domains of interaction. The

accuracy was calculated in the usual way – by subtracting the

word error rate (WER) from 100%, where WER is the sum of

the number of word substitutions, deletions and insertions (in

Fig. 2. Graphical user interface (personal data)

AII 1.4.4

relation to the correct transcriptions) divided by the total

number of words in the correct transcriptions. To evaluate the

accuracy of the system more precisely, each digit (even in

dates), punctuation mark, keyword and isolated letter were

calculated as a separate word (in the same way as they are

spoken). Each measurement unit is also treated as one or more

separate words, depending on its transcription.

Fifteen different medical workers, both male and female,

have evaluated the system accuracy, as well as its speed of

returning recognized words (i.e., the real-time factor). All the

speakers performed adaptation to their particular voices first.

The speed of the system depends heavily on the used

hardware, and the general consensus is that about 1 CPU core

is needed per channel (simultaneous recognition) with a mid-

range CPU (or better) to diminish the delay in obtaining the

results to a manageable small value. On the other hand, the

reported accuracy of 97% varied a bit from speaker to

speaker, without major outliers. The typical recognition errors

included out-of-vocabulary (OOV) words, as the set of

possible words is naturally not a fixed or even a determinable

set, so future supplementation of the language model for the

purpose of covering an even larger number of words and

contexts is planned. Other than that, the spelling of

abbreviations produced most errors (modelling of

abbreviations is a known weakness of the used acoustic

model). Regardless of the few mentioned issues, the testers

have rated this ASR system as a potentially very useful tool.

V. CONCLUSION

The system for automatic medical speech recognition in

Serbian, implemented upon request of the Pension and

Disability Insurance Fund of the Republic of Serbia, enables

easier and faster textual input using dictation, which can

simplify the work of medical workers, increase their

productivity and at the same time prevent some of the typical

spelling errors. The system enables detection of terms spoken

in Serbian or Latin depending on the selected context, while

achieving high recognition accuracy and reliable operation

under specified conditions. Further improvements of accuracy

can be achieved by processing a larger set of documents for

the training of language models, which is a hard, highly

expensive and time-consuming process, but on the other hand,

significantly contributes to the robustness of recognition as

well as end-user satisfaction.

ACKNOWLEDGMENT

The research described in this paper has been supported in

part by the Serbian Ministry of Education, Science and

Technological Development through the project no. 451-03-

68/2020-14/200156: "Innovative Scientific and Artistic

Research from the Faculty of Technical Sciences Activity

Domain".

Fig. 3. Graphical user interface (diagnosis)

AII 1.4.5

REFERENCES

[1] E. Pakoci, B. Popović and D. Pekar, “Using morphological data in

language modeling for Serbian large vocabulary speech recognition,” in

Computational Intelligence and Neuroscience, Special Issue on

Advanced Signal Processing and Adaptive Learning Methods, vol.

2019, 8 pages, 2019.

[2] B. Popović, E. Pakoci and D. Pekar, “A comparison of language model

training techniques in a continuous speech recognition system for

Serbian,” in Proceedings of the 20th International Conference on

Speech and Computer (SPECOM) – Lecture Notes in Artificial

Intelligence, vol. 11096, pp. 522-531, Leipzig, Germany, September

2018.

[3] E. Pakoci, B. Popović and D. Pekar, “Improvements in Serbian speech

recognition using sequence-trained deep neural networks,” in SPIIRAS

Proceedings, vol. 3, no. 58, pp. 53-76, 2018.

[4] V. Peddinti, D. Povey and S. Khudanpur, “A time delay neural network

architecture for efficient modeling of long temporal contexts,” in

Proceedings of the 16th Annual Conference of the International Speech

Communication Association (INTERSPEECH), pp. 3214-3218,

Dresden, Germany, September 2015.

[5] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel and P. Ouellet, “Front-

end factor analysis for speaker verification,” in IEEE Transactions on

Audio, Speech and Language Processing, vol. 19, no. 4, pp. 788-798,

2011.

[6] D. Rosenthal, F. Chew, D. Dupuy, S. Kattapuram, W. Palmer, R. Yap

and L. Levine, “Computer-based speech recognition as a replacement

for medical transcription,” in American Journal of Roentgenology, vol.

170, no. 1, pp. 23-25, 1998.

[7] L. Zhou, S.V. Blackley, L. Kowalski, R. Doan, W.W. Acker, A.B.

Landman, E. Kontrient, D. Mack, M. Meteer, D.W. Bates and F.R.

Goss, “Analysis of errors in dictated clinical documents assisted by

speech recognition software and professional transcriptionists,” JAMA

Network Open, vol. 1, no. 3, 13 pages, 2018.

[8] C-C. Chiu, A. Tripathi, K. Chou, C. Co, N. Jaitly, D. Jaunzeikare, A.

Kannan, P. Nguyen, H. Sak, A. Sankar, J. Tansuwan, N. Wan, Y. Wu

and X. Zhang, “Speech recognition for medical conversations,” in

Proceedings of the 19th Annual Conference of the International Speech

Communication Association (INTERSPEECH), pp. 2972-2976,

Hyderabad, India, September 2018.

[9] I. Hammana, L. Lepanto, T.G. Poder, C. Bellemare and M-S. Ly,

“Speech recognition in the radiology department: A systematic review,”

in Health Information Management Journal, vol. 44, no. 2, pp. 4-10,

2015.

[10] T.G. Poder, J. Fisette and V. Déry, “Speech recognition for medical

dictation: Overview in Quebec and systematic review,” in Journal of

Medical Systems, vol. 42, no. 5, pp. 89, 2018.

[11] J.P. Lyons, S.A. Sanders, D.F. Cesene, C. Palmer, V.L. Mihalik and T.

Weigel, “Speech recognition acceptance by physicians: A temporal

replication of a survey of expectations and experiences,” in Health

Informatics Journal, vol. 22, no. 3, pp. 768-778, 2016.

[12] E. Pakoci, “Influence of morphological features on language modeling

with neural networks in speech recognition systems,” Ph.D. thesis,

Dept. Power, Electronic and Telecommunication Engineering,

University of Novi Sad, Serbia, 2019.

AII 1.4.6



Abstract—In this paper a comparison between three different
types of trained VGG convolutional neural networks (CNNs) is
proposed for the classification of a pediatric chest X-ray image
data set. A deep convolutional neural network with an
architecture resembling the VGGNet is presented using dropout,
decay and data scaling. Since the dataset had a class imbalance,
this was solved using a simple method called data scaling. The
training of the neural network was done using small batches with
a binary cross entropy loss function. The same neural network
was then implemented adding batch normalization layers, and
comparisons were made. Furthermore, the chest X-ray dataset
was also trained using transfer learning with a pre-trained
neural network VGG16 on the ImageNet dataset. Later on
juxtapositions were made on using both techniques. Additionally,
in applying these methods we were able to achieve a classification
with the accuracy higher than 0.95 and 0.97 for the training and
validation datasets, whilst incorporating only 30 epochs.

Index Terms—convolutional neural networks; deep learning;

transfer learning; batch normalization; chest X-ray dataset;
image classification; dropout.

I. INTRODUCTION

Convolutional neural networks (CNNs) are a subset of deep
neural networks, which are used for classifying images. The
main idea is to take a set of images correctly labeled as the
input data and used them to train our neural network so as to
achieve an output with an appropriate categorization. The
inspiration for CNNs comes from the observation of the
animal visual cortex. Conversely, the flourishing of these
networks only came recently due to the increase of
computational power and the development of many possible
libraries that could be used to battle complex mathematically
based problems, such as back propagation. The first paper that
introduced the convolutional neural networks as we have
come to know them today has [1] demonstrated that a model
which consists of a multilayered network can be successfully
used for recognition of stimulus patterns according to the

Lara Laban is with the Faculty of Mechanical Engineering, University of

Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia (e-mail:
llaban@mas.bg.ac.rs)

Radiša Jovanović is with the Faculty of Mechanical Engineering,
University of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia (e-mail:
rjovanovic@mas.bg.ac.rs)

Mitra Vesović is with the Faculty of Mechanical Engineering, University
of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia (e-mail:
mvesovic@mas.bg.ac.rs)

Vladimir Zarić is with the Faculty of Mechanical Engineering, University
of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia (e-mail:
vzaric@mas.bg.ac.rs)

differences in their shapes. However, there is some debate that
the true begging was when a paper in 1990 [2] demonstrated
that a CNN model which aggregates simpler features into
progressively more complicated features can be successfully
used for handwritten character recognition. In 2012 the
ImageNet Large Scale Visual Recognition Challenge [3], at
that moment consisting of he 1000 categories and 1.2 million
images received a submission that would propel the CNNs
development once again. AlexNet [4] achieved a top-5 error
of 15.3% , which at the moment surpassed by an astonishing
10% all of the other submissions, and had a much faster
training time as it was implemented on a GPU. The following
year, the same challenge, now with a larger dataset was won
by ZFNet [5]. It had the top-5 error of 14.8%, however even
more so important is that it was able to reduce the first layer
filter size from 11 11 to 7 7 and had a stride of 2, rather
than 4 in the pooling layer.

VGG16 is a convolutional neural network model proposed
in the paper [6]. This model achieved 92.7% top-5 test
accuracy. The main contribution of this model was that it used
3 3 kernel sized filters, instead of the 7 7 . It was trained
for weeks using GPUs, and had a huge computational cost.
However, it introduced a new idea using the same kernels
throughout the entire architecture, this aided in generalization
for classification problems outside of what they were
originally trained on. If for a second we go back to LeNet [7]
that was the foundation for all of these previously mentioned
CNNs we can observe the main sequence of three layers
convolution, pooling and non-linearity still play the key part,
and sometimes it is beneficial not to import to many layers
when training a smaller dataset [8]. Finally, in recent years
transfer learning [9], which addresses crossdomain learning
problems by extracting useful information from data in a
related domain and transferring them for being used in target
tasks, has been demonstrating a significant impact.

Pneumonia is one of the main causes of death amongst
children, it was stated that 19% of all deaths of kids aged 5
years and less is connected with a viral or bacterial pneumonia
[10]. Today, pneumonia is the single leading cause of
mortality in young children according to the World Health
Organization (WHO). An even scarier report made by WHO
says that 95% of new-onset childhood clinical pneumonia
occurs in developing countries, many of them located in
Africa and South Asia [11].

The lungs of humans are made up of small sacs called
alveoli, which fill with air when a healthy person breathes, in
turn when a person with pneumonia breathes the alveoli
which are filled in this case with pus and fluid, blocking the

Classification of Chest X-Ray Images Using
Deep Convolutional Neural Networks

Lara Laban, Radiša Jovanović, Mitra Vesović and Vladimir Zarić

AII 2.1.1

oxygen from arriving to the lungs, limit the capacity to intake
oxygen. One of the main ways to have a proper diagnosis is
radiographic data. X-rays can help in distinguishing between
different types of pneumonia. However, since rapid
interpretation of images is sometimes very hard, especially in
developing countries, new methods are always sought after
and proposed.

For that reason, an idea to battle this kind of a problem was
proposed in a brilliant paper [12] published in 2018 which
suggested image-based deep learning to identify various
medical diagnoses, including the chest X-ray images from
children. Using convolutional neural networks, transfer
learning to be precise, they achieved an accuracy of 92.8% in
distinguishing between normal and pneumonia images, over
the course of 100 epochs. Moreover, in stating this the central
goal of this paper is to try and implement a simpler CNN to
combat this classification problem, all the while by using less
epochs and if possible obtaining a slightly better classification
accuracy.

This paper is organised in the following manner: section 2
represents a description of a dataset which is used in the
training and validation of the proposed neural network. In
section 3 the main methods which are used are explained in
detail, as well as the architecture of the CNN. As a result, in
section 4 we discuss the results and compare the methods,
based on accuracy and loss functions. In section 5, following a
short summary a conclusion is made and future work and
possible directions are stated.

II. DATASET AND ITS IMPLEMENTATION

The dataset which is used in this paper consists of 5856
chest X-Ray images from children [13], including 4392
pneumonia ray (bacterial and viral) and 1464 normal. Being
that the dataset consist of a couple of thousand pictures, there
is no need to take an approach of data augmentation, where
we increase the diversity of data by altering the original
samples using translation, rotation, shearing, flips and adding
them to the training set. However, we observe that the
pneumonia part of the dataset is much larger than the part of
the normal set, almost 4 times as big, resulting in a class
imbalance. One way to correct this, so that our neural network
may learn appropriately and not pick the pneumonia label
naturally is to scale the data. This can be done by computing a
weight for each class during the training, resulting in an array
[1, 3] , and as an outcome amplifying the loss by a larger

weight when we approach normal data. In this example
treating an instance of normal as 3 instance of pneumonia,
aids in this disproportion.

During the preprocessing of images we resized all the
images to a fixed size 64 64 , and in doing so we also
maintained the aspect ratio. The reasoning behind this being
that all the images in a dataset need to have a fixed feature
vector size. This means all the images will have identical
widths and heights, making it easier to quickly load and
preprocess a dataset and briskly move through our
convolutional neural network. The aspect ratio will enable us

to resize the images along the shorter dimension, be it width
or height, and in cropping it, will maintain the ratio. It is
important to note that this step is not necessary if you are not
working with a difficult dataset. Notwithstanding its benefits,
it was implemented in this particular dataset.

A. ImageNet dataset

ImageNet is a dataset consisting of over 14 million images,
which belong to one thousand classes. It was used as the
dataset in the highly respected convolutional neural network
model VGG16 which was proposed by Oxford scientists. In
this paper the VGG16 network was used as a pre-trained
convolutional neural network, in order to incorporate transfer
learning and compare it to the original paper [12], mentioned
beforehand, as well as the architecture that we propose.

III. METHODS DESCRIPTION

In order to try and reduce overfitting and increase our
classification accuracy on the chest X-ray dataset we endeavor
in performing two types of neural network training
techniques:

- dropout and decay (with and without batch
normalization),

- transfer learning (neural networks as feature extractors)
The first technique that is used in order to improve the
generalization error in the convolutional neural network is
dropout [14]. Dropout is nothing more than a form of
regularization, which succors us in controlling the model
capacity. The dropout layers are arranged in the network in
such a manner that we have randomly disconnected nodes by
a probability of 0.25 in the first few layers; and with a double
increase in probability in the last layer. The reason for this is
that if the first layers are dropped by a higher probability, then
that will later affect the training. The dropout is implemented
after the pooling layer, and before the next convolutional layer
(or last flatten and dense layers). Decay that is used in this
neural network is a standard decay that can be obtained using
the Keras library in Python. Since the learning rate  controls
the step that is made along the gradient, larger steps are
usually used in the beginning to make sure that we do not
stagnate in the local optima, while smaller steps are used
deeper in the network and near the end of the convolution in
order to converge to a global minimum. We have initialized
the learning rate to be 0.05, and applied the following formula
to adjust it after each epoch,

1 1
i

i k i


   

 (1)

where  is the current learning rate, i is the epoch and k is
the decay calculated as the division between the learning rate
and the number of epochs. This type of adjustment of the
learning rate each epoch, can increase accuracy, as well as
reduce the loss function and the time necessary to train a
network. Batch normalization [15] is used to normalize the
activations of a given layer’s inputs by applying mean and
standard deviation before passing it onto the next layer. In
addition, the covariate shift refers to a change in the

AII 2.1.2

distribution of the input variables which are present in the
training and validation data. Since it has been proven that the
training of the neural network is the most coherent when the
inputs to each layer are alike, the main intention is that even
when the explicit values of inputs layers to hidden layers
change, their mean and standard deviation will still remain
relatively the same, thus reducing the covariate shift. Batch
normalization has demonstrated an immensely effective
approach to reducing the number of epochs necessary for
training by allowing each layer to learn independently. Here
the idea that differs from the original paper and is first
proposed in [16] states that the batch normalization should be
implemented after the activation layer. The main reasoning
behind this is that we want to avoid setting the negative values
coming out of the convolution layer to zero. Instead we pass
them through the batch normalization layer, right after the
activation (ReLU) layer, and assure that some of the features
that otherwise would not have made it do. This yields a higher
accuracy and lower loss, and is to this day a debate amongst
the creators of Keras.

Finally, the second technique is transfer learning [17], a
machine learning technique where networks can behave as
feature extractors. Transfer learning is nothing more than the
ability to use a pre-trained model to learn patterns from data,
on which the original network was not trained on. As
previously stated deep neural networks trained on a large scale
dataset ImageNet have demonstrated to be superb at this task.

When treating networks as feature extractors we choose a
point, in this case before the fully connected layer and remove
it. Subsequently, in this particular example while using the
VGGNet pre-trained on the ImageNet we removed the fully
connected layer and stopped at the last pooling layer where
the output shape is 7 7 512  , 512 filters with the size 7 7 .
Now, our feature vector has 7 7 512 25088   values and it
will be used to quantify the contents of the images, which
were not included in the original training process. The format
which allows us to extract these features is the hierarchical
data format version 5 (hdf5), which is used to store and
organize large amount of data.

Transfer learning is an optimization, which has been proven
to yield a better performance and drastically save time. This is
precisely why we used it in this paper, to see if we could
obtain a higher classification, and perform faster. Transfer
learning relaxes the hypothesis that the training data must be
independent and identically distributed with the test data,
which we clearly stated as a must in the beginning of this
chapter. Moreover, transfer learning is able to solve the
problem of insufficient training data. Furthermore, there is the
option to remove the fully connected layers of the existing
network in order to add a new fully connected layer to the
CNN and fine tune the weights to recognize object classes.
However, here it was not implemented since treating networks
as arbitrary feature extractors was enough.

In the following sections we will demonstrate the
architecture of a CNN that is based on VGGNet, its
implementation with and without batch normalization, and

additionally transfer learning will be presented instead of the
CNN that was previously explained.

A. Convolutional Neural Network architecture

Into the bargain all that was explained, we picked the
following CNN architecture shown in Fig. 1. It is consisted of
multiple convolutional and pooling layers, as well as the fully
connected layers. The first two convolutional layers learn 32
filter each with a size 3 3 .

Fig. 1. A schematic of the convolutional neural network without batch
normalization, that resembles the VGGNet. All of the convolutional layers
that precede the fully connected layers have filters 32, 64, 128 that are the
same size 3 3 . The probability distribution is applied in the last layer using
Softmax and the output yields two class labels normal and pneumonia.

Sequentially, the fourth and the fifth layers learn 64 filters

with the size 3 3 and the last two learn 128 filters with the

AII 2.1.3

size 3 3 . The pool layer is used to reduce the computational
load and the number of parameters, thus reducing the risk of
overfitting. We used a max pooling layer with a pool size
2 2 and a stride 2. Finally, we have the fully connected layer
which consists of 8192 parameters, input values which learn
512 nodes. The activation layers which were used are
Rectified Linear Unit (ReLU) defined as,

() max(0,)f x x (2)

where x is the input into the neuron.
Softmax or the normalized exponential function assigns
normalized class probabilities for each prediction, and is
represented by,

()

1

yie
S yi yk j

e
j





 (3)

for 1, ...,i k and (, ...,)1
kz zk z  .

Softmax takes an input vector and normalizes it into a
probability distribution between [0,1] . Therefore the sum of

all output values is equal to 1, which in turn makes the
training converge more quickly. In order to achieve this,
before training we must include one hot encoding in order to
convert the labels from integers to vectors.

In addition, later when we want to add the batch
normalization layer, we can apply it after each activation
layer, as discussed previously.

B. Implementation and training of a much simpler version of
the VGGNet

Taking into the bargain all that was explained before, the
implementation of this CNN was done by using the Python
programming language. We used Keras [18] which is mainly
used for implementing of activation functions, optimizers,
convolutional and pooling layers, and is actually able to do
backpropagation automatically.

Right after we load and preprocess our images dataset it is
necessary to use one hot encoding. This is done by using a
part of the Sklearn library LabelBinarizer. However
beforehand we must split the training data and the validation
data, here we opted to split it 75% and 25%, sequentially. The
next step is the implementation of an optimizer, here we used
the stochastic gradient descent (SGD) optimizer. The SGD
optimizer was set to a learning rate of 0.05  , with a decay
in order to slowly reduce the learning rate over time and
converge to the global solution more efficiently. Decaying the
learning rate is beneficial in reducing overfitting and
obtaining a higher classification accuracy. The smaller the
learning rates are, the smaller the weight update will be
enabling us to converge. The gradient descent method is an
iterative optimization algorithm that operates over an
optimization surface. It is a simple modification to the
standard algorithm of gradient descent. The main purpose of
SGD is to calculate the gradient and adjust the weights of the
training data (but not on the whole dataset, but rather on a
mini batch). The mini batch method is a blend of the SGD and

batch methods were the neural network selects a part of the
training data and updates the weights, but trains the network
with the average weight update. Usually the smallest standard
batch size which is used is 32, however we opted to use 24, as
it complemented our data. The reasoning behind this is that
present research confirms that using small batch sizes
achieves the best training stability and generalization
performance, for a given computational cost, across a wide
range of experiments. The loss function which was used is the
binary_crossentropy function. This was done because we only
had two classes, if there were more we would have had to use
categorical_cross_entropy, but have in mind we could have
used categorical as well, but studies show that binary is much
more efficient in this case.

The training was done on 30 epochs since it was enough to
achieve satisfying results. After the training we implemented
a method that takes the weights and the state of the optimizer
and serializes them to the disc in a hdf5 format, in order to
load them and test the labeling.

C. Implementation using transfer learning

The first step in this process is to extract features from
VGG16, in doing so we are forward propagating the images
until a given layer, and then taking those activations and
treating them as feature vectors. Here the main two
differences are that we used the standard a batch size of 32
and the training and test split is done at the same time as
training, we again split it into 75% training data and 25% test
data. Once the extraction of the features was done, we trained
the classifier on those features. We also implement the
GridSearchCV class to assists us to turn the parameters to the
LogisticRegression classifier.

The final results are presented in the following chapter,
comparisons are made and a visual representation of the
graphs is shown using Matplotlib in order to estimate if there
is overfitting.

IV. RESULTS AND COMPARISONS

The results of the CNN without batch normalization are
presented in Table 1. We clearly see that our neural network
has classification accuracy of 95%. In the following table we
use the term precision which represents true positive divided
by a sum of true positive and false positive, recall which
represents true positive divided by a sum of true positive and
false negative.

Therefore, precision is good to determine when the cost of
false positives is high, on the other hand recall tells us the
number of correctly labeled data. Ultimately, we have the f1-
score used to find the weighted average of recall and
precision. In analyzing the curves shown in Fig. 2 we see that
our network learned until the 30 epoch, beyond that was
simply not necessary since we already had excellent results.
We can also observe that our loss and accuracy curves both
almost match for training and validation, with slight
deviations.

AII 2.1.4

Fig. 2. A graph depicting a convolutional neural network without batch
normalization, that resembles the VGGNet – training and validation loss and
accuracy curves

In Fig. 3 we can see how the labeling looks, when we use
the trained and saved model to label the data with this
obtained accuracy.

Fig. 3. The pre-trained CNN weights are loaded from the disk and make
predictions for 30 randomly selected images. In the upper left and right corner
we have an example of normal lungs, and in the lower left and right corner an
example of pneumonia lungs.

In Table 1 we see that the CNN with batch normalization
obtained the same classification accuracy of 95% after 30
epochs.

TABLE I
EXPERIMENTAL RESULTS

 precision recall f1-score
CNN without batch normalization

macro avg 0.95 0.94 0.95
CNN with batch normalization

macro avg 0.95 0.95 0.95
Transfer learning using VGG16

macro avg 0.97 0.96 0.96

However, in analyzing the curves shown in Fig. 4 we see that
our network learned until the 30 epoch, because further
training past epoch 30 would result in overfitting and a wider

generalization gap (loss function - the gap between the
training loss and validation loss).

Fig. 4. A graph depicting a convolutional neural network with batch
normalization, that resembles the VGGNet – training and validation loss and
accuracy curves

In Table 1 we can see the results obtained by using transfer
learning have a classification accuracy of 97%, which is by far
the best. Furthermore, we observe that the CNN with batch
normalization had a higher recall and a problem with
overfitting past epoch 30, therefore the CNN without it seems
like a better choice. Nevertheless, it is clear then when taking
into account all three approaches we shall choose transfer
learning, because not only does it yield a higher classification
accuracy, but it also wasted less computational time. In
addition when compared with the results of the paper [12],
where transfer learning is also used and the acquired accuracy
is 92.8% over the course of 100 epochs, a higher classification
accuracy is obtained over the course of 30 epochs by
implementing simpler CNNs and transfer learning.

V. CONCLUSION

In this paper we described three different approaches of
using convolutional neural networks to classify a dataset
consisting of normal and pneumonia infected lungs. We used
a CNN that we constructed based on the VGGNet and
implemented it with and without batch normalization.
Furthermore, we used a transfer learning technique by
extracting features of the neural network VGG16 trained on
the ImageNet dataset. The main idea of this paper was to see
if a different approach can have better results on this
particular dataset, as well as see if a smaller neural network
could have almost as good classification as transfer learning.
The final results, when compared had a higher classification
accuracy by a couple of percentages, and also achieved so in
just 30 epochs, as opposed to 100 epochs, so we can conclude
the goal was obtained.

Further research will focus on implementing different types
of optimizers, including metaheuristic algorithms as
optimizers. Also, we will focus on battling larger datasets and
obtaining high classification accuracy using various methods.

AII 2.1.5

ACKNOWLEDGMENT

This research was supported by the Science Fund of the
Republic of Serbia, grant No. 6523109, AI- MISSION4.0,
2020-2022.

This paper was conceived within the research on the
project: “Integrated research in the field of macro, micro and
nano mechanical engineering - Deep machine learning of
intelligent technological systems in production engineering”,
The Ministry of Education, Science and Technological
Development of the Republic of Serbia (contract no. 451-03 -
68 / 2020-14 / 200105), 2020.

This work was financially supported by the Ministry of
Education, Science and Technological Development of the
Serbian Government, Grant TR-35029 (2018-2020).

REFERENCES

[1] K. Fukushima, S. Miyake, “Neocognitron: A new algorithm for pattern
recognition tolerant of deformations and shifts in position,” Pattern
Recognition, vol. 15, no. 6, pp. 455-469, 1982.

[2] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
E. Hubbard, L. D. Jackel, “Handwritten digit recognition with a back-
propagation network,” Advances in Neural Information Processing
Systems 2, pp. 396-404, June, 1990.

[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Haung, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei,
“ImageNet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211-252, April, 2015.

[4] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Advances in Neural
Information Processing Systems, vol. 25, no. 2, pp. 1097-1105, 2012.

[5] M. D. Zeiler, R. Fergus, “Visualizing and understanding convolutional
networks,” 13th European Conference, Zurich, Switzerland, pp. 818-833,
September 6-12, 2014.

[6] K. Simonyan, A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[7] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, n.
11, pp. 2278-2324, November, 1998.

[8] Z. Li, W. Yang, S. Peng, F. Liu, “A survey of convolutional neural
networks: Analysis, applications and prospects,” arXiv preprint
arXiv:2004.02806, 2020.

[9] L. Shao, F. Zhu, X. Li, “Transfer learning for visual Categorization: A
survey,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 26, no. 5, pp. 1019-1034, May, 2015.

[10] I. Rudan, C. Boschi-Pinto, Z. Biloglav, K. Mulholland, H. Campbell,
“Epidemiology and etiology of childhood pneumonia.”, Bulletin of the
World Health Organization, vol. 86, no. 5, pp. 408–416, May, 2008.

[11] World Health Organization, Pneumonia, https://www.who.int/news-
room/fact-sheets/detail/pneumonia, (last accessed 06/07/2020).

[12] D. S. Kermany, M. Goldbaum, W. Cai, C. C. S. Valentim, H. Liang, S.
L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M. K.
Prasadha, J. Pei, M. Y. L. Ting, J. Zhu, C. Li, S. Hewett, J. Dong, I.
Ziyar, A. Shi, R. Zhang, L. Zheng, R. Hou, W. Shi, X. Fu, Y. Duan, V.
A. N. Huu, C. Wen, E. D. Zhang, C. L. Zhang, O. Li, X. Wang, M. A.
Singer, X. Sun, J. Xu, A. Tafreshi, M. A. Lewis, H. Xia, K. Zhang,
“Identifying medical diagnoses and treatable diseases by image-based
deep learning,” Cell, vol. 172, no. 5, pp. 1122-1131, February, 2018.

[13] Public datasets; Chest X-Ray Images (Pneumonia), Version 2
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia,
(last accessed 09/03/2020).

[14] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors”, arXiv preprint arXiv:1207.0580, Jul, 2012.

[15] S. Ioffe, C.Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”, Proceedings of the 32nd
International Conference on Machine Learning, vol. 37, pp. 448-456,
July, 2015.

[16] A. Rosebrock, Deep Learning for computer vision with Pyhton: Starter
Bundle, 1st ed. PyImageSearch, 2017.

[17] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, C. Liu, “A survey on deep
transfer learning,” 27th International Conference on Artificial Neural
Networks, Rhodes, Greece, October 4-7, 2018.

[18] Keras; Python Deep Learning Library https://keras.io, (last accessed
09/03/2020).

AII 2.1.6

Abstract— Chest X-rays are one of the first medical imaging
tools used for correctly assessing different causes of pneumonia.
With the recent spread of the SARS-CoV-2 virus, fast diagnostics
and differentiation of the COVID-19 disease from other causes
(bacterial or viral) is important. In this study we evaluated four
different neural network architectures and applied transfer
learning in order to try to detect and classify pneumonia in
patient images in a 4-class problem (normal, viral, bacterial and
COVID-19). We applied data augmentation on the outnumbered
COVID-19 class and compared the effects of single end-to-end
network training to a two-stage variant. The best results were
obtained using the ResNet50 model with an average cross-
validation accuracy of 89.97%. Across all models the COVID-19
and normal X-ray images showed very high precision and
sensitivity scores.

Index Terms—Chest X-ray, Deep Learning, Convolutional

Neural Networks, COVID-19, SARS-CoV-2, Pneumonia

I. INTRODUCTION
The increase and spread of registered cases of COVID-19

has accentuated the importance and accelerated development
of efficient and reliable methods for diagnosis of this viral
disease [1]. The fast commonly used diagnostic technique is
real-time reverse transcription-polymerase chain reaction (RT-
PCR) [2]. However, low sensitivity of RT-PCR test (60%–
70%), and the deficit of the tests in developing countries
emphasize the role of chest radiology (computed tomography
and X-ray) and blood analysis in diagnostics and timely
treatment [3]. The main features of pneumonia caused by
SARS-CoV-2 on the X-ray images are peripheral and lower
lobe predominant rounded airspace opacities and multifocal
rounded opacities and nodules [4] with multifocal non-
peripheral airspace opacities being less pronounced as a
feature.

The urgency created by the COVID-19 pandemic requires
fast diagnostics and differentiation of the COVID-19 caused
pneumonia cases from other such as bacterial or viral). Early
detection of pneumonia development is another goal, as it

Jelena Božičković – Faculty of Technical Sciences, University of Novi
Sad, Trg Dositeja Obradovića 6, 21102, Novi Sad, Serbia (e-mail:
jelena.bozickovic@live.com).

Ivan Lazić – Faculty of Technical Sciences, University of Novi Sad, Trg
Dositeja Obradovića 6, 21102, Novi Sad, Serbia (e-mail:
ivan.lazic@uns.ac.rs).

Tatjana Lončar Turukalo - Faculty of Technical Sciences, University of
Novi Sad, Trg Dositeja Obradovića 6, 21102, Novi Sad, Serbia (e-mail:
turukalo@uns.ac.rs).

largely influences the flow and consequences of the disease.
Even before the COVID-19 cases, pneumonia was one of the
leading causes of death among children under 5 years old and
lower respiratory tract infections (LRTI) responsible for 2.8
million deaths annually [5]. As one of the first examinations
when COVID-19 or LRTI are suspected, both X-ray or CT
scans provide useful resources for a machine learning
approach to pneumonia detection and classification. The
abundance of new cases facilitate data gathering purposes and
support further improvements towards development of an
automatic diagnostic support model.

Deep learning techniques have already been applied to the
problem of pneumonia detection in X-ray images [6] showing
that an accurate deep learning model can assist in diagnosis,
especially when medical expertise or experience are
insufficient. COVID-19 has been an incentive to speed up the
progress in this area. The literature review from 2020 exhibits
the performance of many well-known pre-trained
architectures in pneumonia detection and classification tasks.
ResNet50, InceptionV3 and InceptionResNetV2 pre-trained
models with ImageNet [7] data were used in [8] with an
average accuracy of 98%, 97% and 87% for the three models
respectively for a binary classification problem between
normal and COVID-19 cases with only 50 samples per class.
In [9] the pretrained 121-DenseNet model was used, as in [6],
achieving an accuracy of 87.2% for a 4-class classification
problem between normal chest X-ray scans and 3 different
pneumonia cases caused by bacteria, viruses or COVID-19.
However, the dataset used in [9] was heavily imbalanced with
155 sample images of the COVID-19 class whereas the
images for other classes were taken from [10]. Regarding the
same 4-class classification problem with a balanced dataset of
around 300 samples per class, authors in [11] used the
Xception model pre-trained on the ImageNet data, where they
achieved an accuracy of 89.5%. In these works, a small set of
COVID-19 image data was available, both [8] and [11]
focused mainly on end-to-end training of the used pre-trained
models without resorting to data augmentation techniques.

In this work we evaluate several ImageNet pretrained
models on the 4-class classification task using an expanded
chest X-ray dataset from healthy patients and patients with
bacterial, viral and COVID-19 induced pneumonia.
Additionally, we compare the results obtained from end-to-
end training of the models and a two-stage training process
associated with transfer learning and fine-tuning.

 Pneumonia Detection and Classification from
X-ray Images – a Deep Learning Approach

Jelena Bozickovic, Ivan Lazic, Member, IEEE, and Tatjana Loncar Turukalo, Member, IEEE

AII 2.2.1

II. MATERIALS AND METHODS

A. Database
In this study two publicly available databases were used.

Images representing classes of normal X-rays, viral X-rays
and bacterial X-rays were collected from the Chest X-Ray
Images (Pneumonia) database [10], while the COVID-19
images class were collected from the COVID-19 Radiography
Database [12].

The databases contain a total of 5669 samples, of which:
1575 samples from the class of normal X-rays, 2530 samples
from the class of bacterial images and 1345 from the class of
viral images. The COVID-19 class, however, only had 219
samples which were taken from 137 patients. The initial
database used in this research was designed so that 15% of the
patients with COVID-19 were moved to the validation and
test set with only 1 unique image per patient. The same
number of X-ray images are taken from other classes for the
validation and test set as well. The rest of the image samples
were used as the training set. The number of samples by class
is shown in Table I. As the number of samples of the COVID-
19 disease class was significantly smaller than the number of
samples in other classes, the COVID-19 samples were
augmented using random rotation by 15⁰, zooming in the
range from 0.8 to 1.2 pixels, image rotation around the
vertical axis and translation by up to 0.1 fraction of total width
and height of the image. This resulted in a database with
approximately balanced classes. All of the input images were
scaled to 224x224 pixels. A sample image for each class is
presented in Fig. 1.

B. Baseline deep learning models
Deep learning is a powerful framework for supervised

learning which benefits from adding more layers and more
units to achieve excellent performance in modeling complex
functions, given sufficiently large labeled dataset [13]. Large
datasets facilitate the use of larger models, offer better
generalization, with the burden placed on the training process
in terms of time and computational power, which is balanced
by advances in hardware, software and parallelization [14].
For smaller data sets, overfitting can be prevented using pre-
trained network models [15], which are usually trained on
very large datasets, such as the ImageNet database, and used
for feature extraction.

In this study, 4 different pretrained models were evaluated:
ResNet50 [16], InceptionV3 [17], InceptionResNetV2 [18]
and Xception [19].

TABLE I

NUMBER OF SAMPLES PER CLASS FOR THE INITIAL DATABASE

Set
Class

Training Test Valid.

Bacterial 1308 21 21
COVID19
augmented 1304 21 21

Normal 1310 21 21
Viral 1290 21 21

Fig. 1. Sample input from a) bacterial, b) COVID-19, c) viral and d) normal
X-ray images.

The ResNet50 [16] model is based on a residual training
mode to simplify the learning of deep neural networks. The
network architecture involves reformulating the layers so that
they learn the residual functions depending on the input
layers. The depth of the residual network is 8 times larger than
the VGG [20] network, but it is less complex.

The InceptionV3 [17] model allows for an expansion of
depth and width of deep neural networks in a way that does
not require more computing power. The model generates
features on several levels using 1x1, 3x3 and 5x5 convolution
filters.

InceptionResNetV2 [18] is a model that combines
Inception models and residual models. It has been shown that
training with residual connections significantly speeds up
training compared to the Inception model itself. It has also
been proven that the combination of these two models gives
better results compared to the individual models.

The Xception [19] model represents such an architecture of
a convolutional neural network in which the convolutional
layers are completely separated. Specifically, the hypothesis
behind the Xception model architecture is as follows:
mapping correlations between channels and spatial
correlations in feature maps can be completely separated.
Network architecture consists of linearly arranged separable
convolutional layers with residual connections.

All of the models show exceptional results on the ImageNet
dataset classification problem, making them powerful feature
extractors and classifiers. Using the stored model weights as
the learned knowledge, the networks can be applied on a new
set of data using transfer learning by detaching the original
classification layers and training only the specific
classification layers needed for the required 4-class problem.

AII 2.2.2

Fig. 2. Deep network architecture used for the experiments.

The models’ performance can then be additionally improved
by fine-tuning the original baseline model weights to the input
data, as the original set of classes didn’t include X-ray images.
This allows the network to adjust its original weights to the
new data, thus enabling it to better suit the new classification
problem. This is usually done with a lower learning rate to
prevent the model from completely forgetting the valuable
knowledge initially learned on the large dataset.

C. Network architecture and model training
The network architecture used in this work is presented in

Fig 2. After one of the mentioned base models, a classification
layer is added which consists of a global average pooling
(GAP) and two fully connected (FC) layers. The models were
constructed using the Tensorflow 2.0 library.

Three different strategies were used to train the classifier
with each baseline model:

- the first approach involved unlocking all layers of the

pre-trained model.
- the second involved a two-step training procedure: in the

first step, the layers of the base model were frozen,
while in the second step, these layers were fully
trainable.

- the third additionally introduced a dropout layer before
the classification layers and performed two-step
training as in the second experiment.

All models were trained using all three strategies. In the
first experiment for all baseline models, the parameters for the
Adam [21] optimizer, the learning speed and the epsilon
parameter were set to 10-5 and 0.1, determined empirically.
For the two-step training methods, the initial training of
classification layers was done with a default learning rate of
0.001, while the second training was done with a learning rate
of 10-5 and epsilon of 0.1. The size of the batch was 32. In the
training process the early stopping method was used, which
monitored the validation loss and stopped the training if the
validation loss didn’t improve for 15 epochs. With the
obtained optimal epoch number, new models and datasets
were constructed from the original images in a cross-
validation fashion. The number of folds was 5 and the split
between the new training and test sets was 80%-20% with
data augmentation being applied to the COVID-19 class in a
similar way as with the initial training. In this case, there
wasn’t a need for a validation set as model parameters were
already determined in advance.

TABLE II

AVERAGE MODEL EVALUATION METRICS

 Experiment 1 Experiment 2 Experiment 3

Model Class Accuracy
[%]

Precision
[%]

Sensitivity
[%] F1 Accuracy

[%]
Precision

[%]
Sensitivity

[%] F1 Accuracy
[%]

Precision
[%]

Sensitivity
[%] F1

R
es

N
et

50
 0

87.75

71.53 83.49 0.77

87.41

74.37 82.62 0.78

89.97

80.26 84.90 0.82
1 98.52 97.26 0.98 97.04 98.62 0.98 97.78 99.31 0.99
2 96.32 97.22 0.97 96.38 93.07 0.95 99.26 95.19 0.97
3 84.63 75.31 0.79 81.85 77.12 0.79 82.57 81.42 0.82

In
ce

pt
io

nV
3 0

87.96

75.21 81.92 0.78

86.07

72.46 82.37 0.77

87.43

76.64 83.77 0.80
1 96.30 97.88 0.97 96.32 97.83 0.97 96.32 98.60 0.97
2 96.32 93.17 0.95 94.89 91.98 0.93 95.61 91.81 0.94
3 84.02 79.49 0.81 80.32 74.21 0.77 81.14 77.15 0.79

In
ce

pt
io

n
R

es
N

et
V

2

0

87.41

73.02 85.82 0.79

85.40

73.76 77.52 0.76

87.96

74.42 85.49 0.79
1 95.61 97.83 0.97 95.58 98.51 0.97 95.58 99.31 0.97
2 95.58 93.74 0.95 94.07 92.91 0.93 94.84 94.23 0.94
3 85.42 74.59 0.80 78.17 73.84 0.76 87.01 76.32 0.81

X
ce

pt
io

n

0

89.48

78.23 87.77 0.82

87.86

76.80 86.42 0.81

87.51

73.76 87.13 0.80
1 97.78 97.11 0.97 94.84 98.60 0.97 96.30 98.62 0.97
2 95.66 93.91 0.95 97.12 91.17 0.94 98.52 89.96 0.94
3 86.27 80.80 0.83 82.67 78.03 0.80 81.77 76.19 0.79

AII 2.2.3

A new model is then trained for each variant of the
baseline network and for each of the three strategies and for
each testing fold of the cross-validation.

III. RESULTS
Table II presents the average evaluation results for

different architectures and training strategies over different
folds using accuracy, precision, sensitivity and F1 measure.
The classes numbers from 0 to 3, correspond to bacterial,
COVID-19, normal and viral class respectively. In the case
of the ResNet50 and InceptionResNetV2 models, the
performance of the models indicated the improved
performance when the two-step training strategy was used.
The pre-trained ResNet50 model has achieved the overall
best results with an accuracy of 89,97%, whereas the
InceptionResNetV2 had an accuracy of 87,96%. In most
cases, adding the dropout layer before the classifier
improved the two-step training process. The Xception and
InceptionV3 models achieved their best score of 89,48% and
87,96% using the first training strategy. Overall, the best
precision and sensitivity is obtained on the COVID-19 class,
with the normal class following it. The most difficult task
proved to be distinguishing between the bacterial and viral
classes.

IV. CONCLUSION
From an engineering point of view, the research showed

that it is possible to use pre-trained architectures in order to
detect and classify different types of pneumonia, including
COVID-19. In general, the two-stage training strategy
provided better results in almost all of the baseline models.
The analysis of confusion matrices indicated COVID-19 X-
ray scans can successfully be differentiated from images of
viral pneumonia. As the network is trained and tested on a
limited input of COVID-19 cases, improvements are
expected by including more patient images to the current
database. Additionally, further testing can be done on other
non-explored pretrained deep neural models such as the
EfficientNet series, NASNet or DenseNet models, as well as
trying out simpler models.

ACKNOWLEDGMENT
This research has been supported by the Ministry of

Education, Science and Technological Development through
the project no. 451-03-68/2020-14/200156: “Innovative
scientific and artistic research from the FTS domain” and
COST Actions CA15120 and CA19136.

REFERENCES

[1] “Coronavirus Disease (COVID-19) – events as they happen”,

www.who.int, 2020. [Online]. Available:
https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/events-as-they-happen

[2] Z.Y. Zu, M.D. Jiang, P.P. Xu, W. Chen, Q.Q. Ni, G.M. Lu, L.J.
Zhang, “Coronavirus Disease 2019 (COVID-19): A Perspective from
China,” Radiology, vol. 296, no. 2, pp. E15–E25, Feb. 2020, doi:
10.1148/radiol.2020200490.

[3] J. P. Kanne, B. P. Little, J. H. Chung, B. M. Elicker, and L. H. Ketai,
“Essentials for Radiologists on COVID-19: An Update—Radiology
Scientific Expert Panel,” Radiology, vol. 296, no. 2, pp. E113–E114,
Feb. 2020, doi: 10.1148/radiol.2020200527.

[4] UCLA Radiology, “COVID-19 Chest X-Ray Guideline”, Los
Angeles, Westwood, Manhattan Beach, Santa Monica, CA. Available:
https://www.uclahealth.org/radiology/covid-19-chest-x-ray-guideline.

[5] GBD 2015 Mortality and Causes of Death Collaborators, “Global,
regional, and national life expectancy, all-cause mortality, and cause-
specific mortality for 249 causes of death, 1980–2015: a systematic
analysis for the Global Burden of Disease Study 2015”, Lancet 2016;
388: 1459–1544

[6] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding,
A. Bagul, C. Langlotz, K. Shpanskaya, M. P. Lungren, A. Y. Ng,
“CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays
with Deep Learning,” arXiv:1711.05225 [cs, stat], Dec. 2017,
[Online]. Available: http://arxiv.org/abs/1711.05225.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in 2009 IEEE
Conference on Computer Vision and Pattern Recognition, Jun. 2009,
pp. 248–255, doi: 10.1109/CVPR.2009.5206848.

[8] A. Narin, C. Kaya, and Z. Pamuk, “Automatic Detection of
Coronavirus Disease (COVID-19) Using X-ray Images and Deep
Convolutional Neural Networks,” arXiv:2003.10849 [cs, eess], Jul.
2020, [Online]. Available: http://arxiv.org/abs/2003.10849.

[9] A. Mangal, S. Kalia, H Rajgopal, K. Rangarajan, V. Namboodiri, S.
Banerjee, C. Arora, “CovidAID: COVID-19 Detection Using Chest
X-Ray,” arXiv:2004.09803 [cs, eess], Apr. 2020, [Online]. Available:
http://arxiv.org/abs/2004.09803.

[10] D. S. Kermany, K. Zhang, and M. H. Goldbaum, “Labeled Optical
Coherence Tomography (OCT) and Chest X-Ray Images for
Classification,” 2018, doi: 10.17632/RSCBJBR9SJ.2.

[11] A. I. Khan, J. L. Shah, and M. M. Bhat, “CoroNet: A deep neural
network for detection and diagnosis of COVID-19 from chest x-ray
images,” Computer Methods and Programs in Biomedicine, vol. 196,
p. 105581, Nov. 2020, doi: 10.1016/j.cmpb.2020.105581.

[12] M. E. H. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M.
Abdul Kadir, Z. Bin Mahbub, K. R. Islam, M. S. Khan, A. Iqbal, N.
Al-Emadi, M. Bin I. Reaz, T. I. Islam, “Can AI help in screening
Viral and COVID-19 pneumonia?,” arXiv:2003.13145 [cs], Jun.
2020, [Online]. Available: http://arxiv.org/abs/2003.13145.

[13] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning”, MIT
Press, Nov. 2016.

[14] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning", Nature, vol.
521, no. 7553, pp. 436-444, 2015. Available: 10.1038/nature14539

[15] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning: A
Review and New Perspectives,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828,
Aug. 2013, doi: 10.1109/TPAMI.2013.50.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015, [Online].
Available: http://arxiv.org/abs/1512.03385.

[17] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the Inception Architecture for Computer Vision,”
arXiv:1512.00567 [cs], Dec. 2015, [Online]. Available:
http://arxiv.org/abs/1512.00567.

[18] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
Inception-ResNet and the Impact of Residual Connections on
Learning,” arXiv:1602.07261 [cs], Aug. 2016, Available:
http://arxiv.org/abs/1602.07261.

[19] F. Chollet, “Xception: Deep Learning with Depthwise Separable
Convolutions,” arXiv:1610.02357 [cs], Apr. 2017, Available:
http://arxiv.org/abs/1610.02357.

[20] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv:1409.1556 [cs], Apr.
2015, [Online]. Available: http://arxiv.org/abs/1409.1556.

[21] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” arXiv:1412.6980 [cs], Jan. 2017, Available:
http://arxiv.org/abs/1412.6980.

AII 2.2.4

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
https://doi.org/10.1148/radiol.2020200490
https://doi.org/10.1148/radiol.2020200527
https://www.uclahealth.org/radiology/covid-19-chest-x-ray-guideline
http://arxiv.org/abs/1711.05225
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/2003.10849
http://arxiv.org/abs/2004.09803
https://doi.org/10.17632/RSCBJBR9SJ.2
https://doi.org/10.1016/j.cmpb.2020.105581
http://arxiv.org/abs/2003.13145
https://doi.org/10.1109/TPAMI.2013.50
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1412.6980



Apstrakt—Akvatični insekti i drugi bentonski
makrobeskičmenjaci uglavnom se koriste kao bioindikatori
ekološkog stanja slatkih voda. Međutim, skup i dugotrajan
postupak identifikacije vrsta predstavlja jednu od ključnih
prepreka za pouzdan biomonitoring akvatičnih ekosistema. U
radu je predložen metod za identifikaciju vrsta zasnovan na
dubokom učenju čija je evaluacija obavljena na nekoliko javno
dostupnih skupova podatak (FIN-Benthic, STONEFLY9 i
EPT29) kao i na sopstvenom CHIRO10 skupu podataka.
Predloženi metod se zasniva na tri tehnike dubokog učenja koje
se koriste za poboljšanje robusnosti kada se za obučavanje
koristi relativno mali skup podataka: preneseno učenje (eng.
transfer learning), proširivanje podataka (eng. data
augmentation), kao i odbacivanje (eng. dropout). Evaluacija
modela je vršena korišćenjem ulaznih slika dimenzija 256x256
piksela gde je 50% slika korišćeno za treniranje, 20% za
validaciju, a 30% za testiranje. Dobijeni rezultati pokazuju
značajno poboljšanje u odnosu na tradicionalne metode koje su
originalno korišćenje i potvrđuju da postoji značajan dobitak
kada postoji veći broj slika po uzorku.

Ključne reči—Duboko učenje; konvolucione neuronske mreže;

klasifikacija slika; preneseno učenje; proširivanje podataka;
biomonitoring; akvatični insekti.

I. UVOD
Raznolikost gena, vrsta i ekosistema opada globalno brže

nego ikad pre u ljudskoj istoriji [1]. Akvatični ekosistemi
prikazuju među najvećim stopama opadanja sa alarmantnim
gubitkom biodiverziteta, te je potreba za isplativim alatima za
biomonitoring time i veća.

Tradicionalni pristup morfološkoj identifikaciji u
biomonitoringu pretpostavlja korišćenje što šire taksonomske
rezolucije [2]. Međutim, identifikacija makrobeskičmenjaka
na osnovu morfoloških karakteristika može biti problematična
jer broj pogrešno klasifikovanih vrsta raste sa povećanjem
taksonomske rezolucije. S druge strane, morfološka
identifikacija je vremenski zahtevan i skup proces, te je kao
takav neprimenjiv za rutinski biomonitoring [3], [4].
Pobrojani nedostaci tradicionalnog biomonitoringa stvaraju
potrebu za razvojem alternativnih pristupa za obradu uzoraka.

Aleksandar Milosavljević – Elektronski fakultet, Univerzitet u Nišu,
Aleksandra Medvedeva 14, 18000 Niš, Srbija (e-mail:
aleksandar.milosavljevic@elfak.ni.ac.rs).

Đurađ Milošević – Prirodno-matematički fakultet, Univerzitet u Nišu,
Višegradska 33, 18000 Niš, Srbija (e-mail: djuradj@pmf.ni.ac.rs).

Bratislav Predić – Elektronski fakultet, Univerzitet u Nišu, Aleksandra
Medvedeva 14, 18000 Niš, Srbija (e-mail: bratislav.predic@elfak.ni.ac.rs).

Nedavni napredak u računarskom vidu u pogledu klasifikacije
slika korišćenjem konvolucionih neuronskih mreža (KNM) i
dubokog učenja otvorili su put pouzdanoj automatizaciji
procesa identifikacije.

Klasifikacija slika u računarskom vidu je problem gde se na
osnovu skupa slika određenih kategorija izgrađuje model
sposoban da predvidi kategoriju, sa određenom tačnošću, za
novo zadatu sliku. Problem nije jednostavan pošto slike mogu
da sadrže različite varijacije. Tipičan način za rešavanje ovog
problema je pristup zasnovan na podacima [5]. Umesto da
pokušavamo da opišemo svaku od klasa koju želimo da
identifikujemo, koristi se veliki broj slika za svaku od klasa
kako bi se izgradio model (klasifikator) koji je u stanju da ih
identifikuje. Tradicionalni pristup klasifikaciji je
podrazumevao ručno projektovanje različitih ekstraktora
vektora obeležja (eng. feature) na osnovu kojih bi se obučavao
klasifikator. Međutim, veliki napredak se javio pojavom
dubokih KNM i kompletnog obučavanja (eng. end-to-end
learning). Duboke KNM imaju sposobnost da izgrađuju
hijerarhiju obeležja kroz različite konvolucione slojeve koje
poseduju, te kao takve postaju nezamenjive u ulozi
ekstraktora obeležja koji uči iz podataka.

Rad je organizovan na sledeći način: poglavlje 2 sadrži opis
srodnih radova koji se bave identifikacijom vrsta za potrebe
akvatičnog biomonitoringa, kao i javnih skupova podataka
koji su korišćeni u ovom radu. U poglavlju 3 dat je opis
predloženog metoda uključujući i detalje konkretne
implementacije. Ostvareni rezultati i odgovarajuća diskusija
dati su u poglavlju 4. Konačno, u zaključku (poglavlje 5) je
dat rezime i naznačeni su pravci daljeg istraživanja.

II. SRODNI RADOVI I SKUPOVI PODATAKA
Problem automatizovane taksonomske identifikacije

bentonskih makrobeskičmenjaka zasnovane na klasifikaciji
slika je obrađen u radovima [6]–[11]. Lytle i dr. [6] su razvili
jedan od prvih sistema ove vrste. Njihov sistem BugID koristi
Scale Invariant Feature Transform (SIFT) deskriptore [12] u
kombinaciji sa Random Forest (RF) klasifikatorom i na
STONEFLY9 skupu podataka [6], [13] postiže tačnu
klasifikaciju u 95,5% slučajeva.

Larios i dr. [7] su za klasifikaciju koristili tri različita
ekstraktora obeležja: Histogram of Oriented Gradients (HOG),
Beam Angle Statistics (BAS) i SIFT specijalizovanih za
različite delove prostora obeležja. Testiranje predloženog
metoda je vršeno na EPT29 skupu podataka koji sadrži 4722

Identifikacija vrsta za potrebe biomonitoringa
korišćenjem konvolucionih neuronskih mreža i

dubokog učenja
Aleksandar Milosavljević, Đurađ Milošević i Bratislav Predić

AI 2.1.1

slike 29 akvatičnih vrsta koje pripadaju redovima
Ephemeroptera, Plecoptera i Trichoptera koji se najčešće
koriste za procenu stanja akvatičnih ekosistema. Najbolji
rezultat od 88,06% je ostvaren korišćenjem Spatial-Pyramid
Kernel Support Vector Machines (SVM) klasifikatora u
kombinaciji sa stratifikovanom 3-kratnom unakrsnom
validacijom.

Kiranyaz i dr. [8] su predložili još jedan klasičan, tj. pre
dubokog učenja, pristup morfološkoj identifikaciji
makrobeskičmenjaka. Skup podataka korišćen u njihovom
istraživanju se sastojao od 1350 slika 8 taksonomskih vrsta.
Skup podataka nije javni, te ga nismo koristili u našim
eksperimentima. Za ekstrakciju obeležja koristili su ImageJ
softver koji generiše 15-to dimenzione vektore obeležja na
osnovu kojih su obučavani različiti klasifikatori: SVM,
Bayesian Classifiers (BC) i dve neuronske mreže: Multi-
Layer Perceptron (MLP) i Radial Basis Function Network
(RBFN). Najbolji rezultat i grešku od 3,57% je zabeležio
MLP model.

Joutsijoki i dr. [9] su koristili isti skup podataka i
metodologiju za ekstrakciju obeležja kako bi ispitali
primenjivost veštačkih neuronskih mreža za identifikaciju
makrobeskičmenjaka. Eksperimenti su vršeni sa tri
arhitekture: MLP, Probabilistic Neural Network (PNN) i
RBFN, a MLP se ponovo pokazao najbolje ostvarujući tačnost
od 95,3%. Treba napomenuti da je ovde korišćena drugačija
metodologija podele skupa, tako da je 80% korišćeno za
treniranje, a po 10% za validaciju i testiranje.

Raitoharju i dr. [10] su kreirali javno dostupan skup FIN-
Benthic sa ciljem testiranja različitih metodologija
klasifikacije vizuelno sličnih vrsta akvatičnih
makrobeskičmenjaka. FIN-Benthic sadrži 3 podskupa sa 64,
29 i 9 vrsta. Broj slika po klasi varira između 7 i 577. U radu
je predložena i metodologija za slikanje uzoraka iz različitih
uglova korišćenjem dva kamere. Ovo je značajno za proces
identifikacije jer omogućava kombinovanje dve nezavisne
predikcije pri određivanju vrste uzorka. Još jedna bitna
karakteristika FIN-Benthic skupa je da sadrži 10 eksplicitnih
podela na trening (50%), validacione (20%) i test (30%)
podskupove. Eksperimenti koje su autori sproveli su prvi put
iskoristili KNM (AlexNet [14]), kako za ekstrakciju obeležja
u kombinaciji sa SVM klasifikatorom, tako i za kompletno
obučavanje koje je dalo i nešto bolje rezultate. Najbolje
tačnosti po tri definisana podskupa su 75,74% (podskup 1),
81,04% (podskup 2) i 90,14% (podskup 3).

Konačno, rad [11] predstavlja naš doprinos u oblasti
automatske identifikacije vrsta larvi hironomida (Diptera:
Chironomidae). U radu je predstavljen kreirani skup podataka
koji sadrži 1846 slika i sastoji se od 10 morfološki vrlo sličnih
vrsta iz istog roda ili podfamilije (vidi Sliku 1). U radu je
predstavljen metod zasnovan na korišćenju ResNet-50 [15]
KNM prethodno obučene na ImageNet [16] skupu koji je dao
tačnost od 99,465% na validacionom skupu koji je činio 20%
ukupnih podataka.

U Tabeli I prikazani su detalji skupova podataka koji su
korišćeni za potrebe istraživanja predstavljenih u ovom radu.
Ilustracija CHIRO10 skupa je data na slici 1.

TABELA I

DETALJI KORIŠĆENIH SKUPOVA PODATAKA

Naziv
skupa

Pod-
skup

Br.
klasa

Br.
uzoraka

Br.
slika

Br. slika
po

uzorku

Br. slika
po klasi

CHIRO10

1 10

1846 1846 1

79‒207
(~186)

2 5 199‒684
(~369)

3 2 199‒1647
(~923)

FIN-Benthic

1 64 7705 15074 1‒2 (~2) 7‒577
(~235)

2 29 6038 11832 1‒2 (~2) 230‒577
(~408)

3 9 1692 3272 1‒2 (~2) 322‒395
(~363)

STONEFLY9 ‒ 9 774 3845 1‒5 (~5) 119‒532
(~427)

EPT29 ‒ 28 1608 4794 1‒4 (~3) 27‒366
(~171)

Sl. 1. Ilustracija CHIRO10 skupa podataka.

III. OPIS METODA
Predloženi metod identifikacije vrsta na osnovu slika se

zasniva na dubokom učenju, tj. na obučavanju rezidualne

AI 2.1.2

KNM u ulozi klasifikatora. Da bi se ostvarila robusnost u
režimu ograničenog broja trening uzoraka korišćene su
sledeće tehnike pri projektovanju i obučavanju klasifikatora:

1. Preneseno učenje (eng. transfer learning)
2. Odbacivanje (eng. dropout)
3. Proširivanje podataka (eng. data augmentation)

Preneseno učenje predstavlja osnovnu tehniku koja
omogućava korišćenje dubokih KNM za rešavanje problema
sa relativno malim skupom podataka. Zasniva se na
korišćenju prethodno utrenirane mreže na nekom velikom
skupu podataka, kao što je npr. ImageNet skup. Treniranje na
ImageNet skupu obezbeđuje da mreža izgradi hijerarhiju
različitih obeležja koje se mogu naći na fotografijama
generalno i koje je pogodno iskoristiti za klasifikaciju novih
fotografija. Da bi takav transfer bio moguć, potrebno je
zameniti vršni deo mreže zadužen za klasifikaciju i utrenirati
ga koristeći niz obeležja koje identifikuje duboka KNM.
Uobičajeno je da se deo KNM ispred klasifikatora naziva
enkoder. U zavisnosti od prirode novog skupa ovakav pristup
može da bude i sasvim dovoljan. Međutim, u našem slučaju
ulazni podaci ne predstavljaju nešto što se tipično nalazi na
fotografijama, zbog toga je bilo neophodno izvršiti dvofazno
obučavanje. Nakon obučavanja klasifikatora u prvoj fazi, u
drugoj fazi je vršeno fino podešavanje cele mreže. Fino
podešavanje nije ništa drugo do obučavanja celokupne mreže,
kako klasifikatora tako i enkodera. Termin fino se koristi da
naznači korišćenje vrlo malih koeficijenata učenja kako bi se
što manje narušile polazne vrednosti parametara.

Druga tehnika koja je iskorišćena kako bi se povećala
robusnost klasifikatora je odbacivanje [17]. Odgovarajući sloj
je dodat nakon enkodera, tako da se u svakom koraku
obučavanja odbacuje određen procenat (u našem slučaju 50%)
obeležja na osnovu kojih se vrši klasifikacija uzoraka. U fazi
testiranja i eksploatacije mreže se uzimaju u obzir svi izlazi,
ali se vrši skaliranje vrednosti za odgovarajući procenat
odbacivanja. Na ovaj način se postiže u proseku isti nivo
izlaza koji smo imali kod treniranja. Efekat koji se postiže
primenom odbacivanja je da klasifikator mora da se oslanja na
više različitih obeležja pri određivanju kategorije. Na ovaj
način se izbegava preterano prilagođavanje modela (eng.
overfitting), a samim tim i bolji rezultati na validacionom
skupu.

Obučavanje neuronske mreže da klasifikuje slike zahteva
nalaženje obeležja koje određuju odgovarajuće klase. Taj
proces zahteva veliku količinu trening uzoraka kako bi se
izolovale ključne karakteristike klasa i dobio klasifikator
otporan na različite varijacije koje na slikama mogu da se
jave. Kada imamo manju količinu trening podataka, a
koristimo model velikog kapaciteta, dešava se model vrlo
brzo „zapamti“ sve trening uzorke, ali zato daje loše rezultate
na validacionom skupu. Tipično korišćena tehnika koja služi
da se ovo izbegne je proširivanje podataka. Proširivanje
podataka podrazumeva primenu nasumičnih transformacija
nad ulaznim slikama tako da se u svakom trening ciklusu
mreži predoči nešto što ranije nije „videla“. U zavisnosti od
prirode skupa podataka, tipične transformacije uključuju
obrtanje (eng. flip), rotaciju, translaciju, skaliranje,

zakošavanje, promenu osvetljaja i kontrasta, itd.

A. Arhitektura mreže

Vodeći se prethodno obrazloženim principima, za
klasifikaciju je usvojena arhitektura zasnovana na ResNet-50
[15] enkoderu prikazana na slici 2.

Sl. 2. Šematski prikaz korišćene arhitekture zasnovane na ResNet-50 mreži.

Na izbor ResNet-50 mreže utrenirane na ImageNet skupu
kao enkodera je uticalo nekoliko faktora: dobri rezultati na
ImageNet skupu, veličina mreže u pogledu broja parametara,
memorijsko zauzeće u toku treniranja, brzina obučavanja, kao
i dostupnost modela u korišćenom programskom okruženju.
ResNet arhitektura generalno vrlo često predstavlja dobar
inicijalni izbor zbog dobrog odnosa preciznosti i brzine
obučavanja.

ResNet-50 enkoder poseduje 23.587.712 parametara, dok
na izlazu daje 2048 obeležja. Izlazi se dobijaju korišćenjem

AI 2.1.3

globalnog usrednjavanja (eng. global average pooling) po
izlaznoj mapi obeležja koja za korišćeni ulaz dimenzija
512x512 piksela iznosi 16x16x2048.

Na dobijenih 2048 izlaza iz enkodera se primenjuje
odbacivanje sa faktorom 50%. Ovo u praksi znači da se u fazi
obučavanja polovina, tj. 1024 nasumično izabranih izlaza
postavi na nulu. Tako modifikovani izlazi enkodera se dovode
na potpuno povezani sloj sa 3 neurona gde svaki izlaz
odgovara jednoj klasi. Sloj poseduje 6.147 parametara koji se
obučavaju u prvoj fazi. Na izlaze se primenjuje softmax
aktivaciona funkcija (1) čime ovaj sloj dobija ulogu
klasifikatora obeležja koje daje ResNet-50 enkoder. Izlazi
softmax funkcije predstavljaju verovatnoće da je tekući
uzorak pripadnik neke od klasa. Ovo praktično znači da
pojedinačni izlazi imaju vrednosti iz intervala [0, 1] i da je
zbir svih izlaza jednak 1.

   .




j

y

y

i i

i

e

e
yS (1)

B. Implementacija i obučavanje mreže

Za implementaciju predložene arhitekture iskorišćen je
programski jezik Python i biblioteka Keras [18]. Keras je
biblioteka visokog nivoa koja definiše pojednostavljeni
interfejs za implementaciju dubokih neuronskih mreža i u
našem slučaju se oslanja na TensorFlow [19] biblioteku za
realizaciju svih funkcionalnosti.

U okviru applications modula Keras poseduje nekoliko
dubokih KNM arhitektura istreniranih na ImageNet skupu.
Instanciranjem klase ResNet50, uz odgovarajuće parametre,
dobijamo enkoder za naš model. Na izlaz enkodera se
nadovezuje Dropout i Dense sloj sa softmax aktivacijom čime
se dobija kompletan model. Kako se u prvoj fazi obučavanja
težine ResNet-50 enkodera ne menjaju, potrebno je za sve
konvolucione slojeve u enkoderu postaviti atribut trainable na
False.

Kreirani model je kompajliran tako da koristi Adam [20]
algoritam za optimizaciju (optimizers modul),
sparse_categorical_crossentropy tip greške (losses modul),
dok se kao metrika tačnosti koristi
sparse_categorical_accuracy (metrics modul). Algoritam
optimizacije je izabran zbog brze konvergencije, dok su
greška za obučavanje i odgovarajuća metrika tačnosti
standardni izbor za problem klasifikacije. Varijante ovih
funkcija sa prefiksom sparse_ se koriste kada se klase koje
predstavljaju očekivani izlaz zadaju kao celi broj (0, 1 ili 2 u
našem slučaju).

Za potrebe proširivanja podataka iskorišćena je Keras
ugrađena klasa ImageDataGenerator koja se nalazi u
preprocessing modulu, podmodul image. Pri konstruiranju
odgovarajućeg generatora slika definišu se opsezi za različite
transformacije koje će nasumično primenjivati. U našem
slučaju korišćeno je horizontalno i vertikalno obrtanje slike,
rotacija do ±90°, translacija do ±15% po oba pravca, promena
osvetljaja do ±20%, zakošavanje i skaliranje do ±10%.

Ilustracija je data na slici 3. Proširivanje podataka se vrši
samo za trening skup, do za potrebe validacije koriste
neizmenjene slike.

Sl. 3. Ilustracija proširivanja podataka. Prva slika (gore-levo) predstavlja
ulaz, dok su ostale slike nastale primenom nasumičnih transformacija.

S obzirom da je korišćen generator slika, za obučavanje
mreže koristi se metod fit_generator. Dodatna kontrola
procesa obučavanja je u Kerasu moguća prosleđivanjem liste
callback objekata. Odgovarajuće klase se nalaze u modulu
callbacks i u našem slučaju iskorišćene su:
LearningRateScheduler, EarlyStopping, ModelCheckpoint i
CSVLogger.

LearningRateScheduler obezbeđuje definisanje proizvoljne
funkcije za izmenu koeficijenta brzine obučavanja u
zavisnosti od tekuće epohe obučavanja. U našem slučaju, ovaj
callback je iskorišćen za implementaciju tzv. kosinusnog
kaljenja (eng. cosine annealing) [21]. Kod kosinusnog
kaljenja koeficijent obučavanja se smanjuje po kosinusnoj
funkciji od neke inicijalne do neke minimalne vrednosti u
toku određenog broja epoha koje su definisane periodom
ponavljanja. U prvoj fazi obučavanja je korišćena perioda
ponavljanja od 10 epoha, sa inicijalnim koeficijentom
obučavanja u rasponu od 10-3 do 10-5, uz smanjivanje 0,7 puta
pri svakoj novoj periodi.

Kako ime sugeriše, EarlyStopping callback se koristi za
ranije zaustavljanje procesa obučavanja ukoliko u određenom
broju epoha nema napretka po određenom parametru. U
našem slučaju je korišćeno 30 epoha i praćena je tačnost na
validacionom skupu.

CSVLogger callback se koristi za snimanje greški i tačnosti
nad trening i validacionim skupom u toku procesa
obučavanja, a u cilju kasnije vizuelizacija ovog procesa.

Konačno, ModelCheckpoint je iskorišćen za snimanje
najboljeg rezultata u pogledu tačnosti postignute nad
validacionim skupom. Ovako zabeležen model je iskorišćen
za narednu fazu obučavanja, tj. fazu finog podešavanja.

Fino podešavanje je vršeno na gotovo identičan način, uz
par sitnijih izmena. Nakon učitavanja modela dobijenog iz

AI 2.1.4

prve faze obučavanja, izvršeno je aktiviranje obučavanja za
sve slojeve iz ResNet-50 enkodera (trainable atribut
postavljen na True). Da bi se izbegla drastična izmena težina u
enkoderu, koeficijent obučavanja se kretao u rasponu od 10-5
do 10-7. Konačno, da bi se dobio model koji daje najbolje
rezultate na celokupnom skupu podataka, umesto standardnog
validacionog, iskorišćen je kompletan neizmenjen skup
podataka. Obučavanje je i dalje rađeno sa proširivanjem
podataka trening skupa. Odgovarajući rezultati su
prezentovani u narednom poglavlju.

IV. REZULTATI I DISKUSIJA
U cilju evaluacije predloženog metoda, za svaki skup

podataka, obučili smo 10 modela, po jedan za svaku podelu.
Rezultati su dobijeni evaluacijom obučenih modela na
odgovarajućem test skupu koji sadrži 30% svih uzoraka iz
skupa podataka. Treba naglasiti da slike iz trening skupova
nisu ni na koji način korišćene u procesu obučavanja modela,
te na taj način predstavljaju realne očekivane performanse
modela na nepoznatim podacima.

S obzirom da svi skupovi podataka, sem našeg CHIRO10
skupa, poseduju više slika po uzorku, kao metrika tačnosti je
izabrana tačnost na nivou uzorka, a ne slike. Da bi uporedili
kako različiti metodi akvizicije više slika po uzorku utiču na
rezultat, računali smo i tačnost na nivou slike. Tačnost na
nivou uzorka je računata usrednjavanjem predikcija, tj.
raspodela verovatnoća, dobijenih za svaku od slika uzorka, te
dodelom najverovatnije klase. Na primer, ukoliko imamo 3
klase i 2 slike za uzorak, ukoliko model prediktuje (60%, 10%
i 30%) za prvu sliku i (10%, 40% i 50%) za drugu sliku, tada
se dobija srednja predikcija od (35%, 25% i 40%), te će
uzorak biti pridružen trećoj klasi.

TABELA II

SREDNJA TAČNOST I STANDARDNA DEVIJACIJA KLASIFIKACIJE UZORAKA

Naziv skupa Podskup
Srednja

tačnost [%]
Standardna

devijacija [%]

CHIRO10
1 96,79 0,70
2 99,17 0,36
3 99,33 0,37

FIN-Benthic
1 81,00 0,85
2 85,64 0,70
3 96,58 0,70

STONEFLY9 ‒ 99,01 0,61
EPT29 ‒ 97,43 0,49

TABELA III

POREĐENJE SA ORIGINALNIM REZULTATIMA I REZULTATIMA NA NIVOU SLIKE

Naziv
skupa

Pod-
skup

Origin.
rezultati

[%]

Naši
rezultati

[%]

Pobo-
ljšanje

[%]

Naši
rezultati
po slici

[%]

Pobo-
ljšanje po

uzorku
[%]

FIN-
Benthic

1 75,74 81,00 +5,29 76,59 +4,41
2 81.04 85,64 +4,60 81,19 +4,45
3 90,14 96,58 +6,44 93,63 +2,95

STONE-
FLY9 ‒ 94,50 99,01 +4,55 97,69 +1,32

EPT29 ‒ 88,06 97,43 +9,56 95,37 +2,06

U Tabeli II prikazani su usrednjeni rezultati koji prikazuju
tačnost na nivou uzorka kao i odgovarajuća standardna
devijacija. U Tabeli III prikazano je poređenje dobijenih
rezultata korišćenjem predloženog metoda i originalnih
rezultata (FIN-Benthic [10], STONEFLY9 [6] i EPT29 [7]).

Predloženi metod je pokazao značajno poboljšanje u
identifikaciji vrsta na svim javnim skupovima podataka koje
se kreće u opsegu od 4,55 do 9,56%. Jedini lošiji rezultat je
zabeležen na našem CHIRO10 skupu, ali razlog za to je
drugačija strategija evaluacije rezultata koja koristi dvostruku
unakrsnu evaluaciju, tj. odvojeni validacioni i test skup.
Takođe razlog za lošiji rezultat leži u činjenici da su postojeći
eksperimenti vršeni sa slikama 256x256 piksela, dok je
originalni rezultat postignut sa slikama 512x512 piksela.

Ukoliko pogledamo matricu konfuzije prikazanu na slici 4,
uočava se da je najlošiji rezultat od 82,7±8,1% ostvaren kod
klasifikacije Polypedilum laetum jedinki. Razlog za to treba
tražiti u činjenici da sve ostale klase poseduje ~200 slika po
klasi, dok za ovu klasu imamo svega 79 slika. Klasa Tvetenia
calvescens se nalazi na drugom mestu sa 87,2±5,4%, međutim
ovaj put je većina pogrešno klasifikovanih uzoraka
(11,3±4,4%) otišla na klasu Tvetenia discoloripes koja je vrlo
slična (pripada istom rodu).

Uticaj više slika po uzorku na tačnost klasifikacije uzoraka
je pokazalo poboljšanje od 1,32 do 4,45%. Pokazuje se da
metod akvizicije slika korišćen kod FIN-Benthic skupa, gde
dve kamere slikaju uzorak iz dva ugla, daje bolje rezultate od
odgovarajućih metoda korišćenih kod STONEFLY9 i EPT29
skupova podataka gde je broj slika po uzorku 5 i 3, ali se
koristi jedna kamera.

Sl. 4. Matrica konfuzije za CHIRO10 skupa podataka (podskup 1).

Konačno, kvalitet slika takođe igra vrlo bitnu ulogu.
Ukoliko uporedimo FIN-Benthic podskup 2 (29 klasa, 6038
uzoraka i 11832 slika) sa EPT29 skupom (28 klasa, 1608

AI 2.1.5

uzoraka i 4794 slika) svi parametri govore u korist FIN-
Benthic skupa. Međutim, tačnost FIN-Benthic podskup 2
skupa iznosi 85,64%, dok je tačnost kod EPT29 skupa
97,43%. Razlog za ovo je, po našem mišljenju, kvalitet slika
koji se ogleda u nivou detalja. Kod FIN-Benthic skupa je taj
kvalitet mnogo lošiji nego kod ostalih skupova što se
verovatno ogleda i na tačnost klasifikacije.

V. ZAKLJUČAK
U radu je predložen i evaluiran pristup za identifikaciju

vrsta za potrebe akvatičnog biomonitoringa. Predloženi metod
se oslanja na tri tehnike dubokog učenja koje imaju za cilj
poboljšanje robusnosti kada se obučavanje vrši na relativnom
malim skupovima podataka: preneseno učenje, proširivanje
podataka i odbacivanje. Preneseno učenje je primenjeno
korišćenjem ResNet-50 KNM prethodno obučene na
ImageNet skupu podataka. Za evaluaciju je iskorišćen naš
CHIRO10 skup podataka, kao i nekoliko javnih skupova
(FIN-Benthic, STONEFLY9 i EPT29).

Da bi mogli da poredimo rezultate na različitim skupovima
podataka, izvršili smo unifikaciju trening procesa korišćenjem
slika veličine 256x256 piksela i 10 podela podataka kako bi
izmerili srednju tačnost i standardnu devijaciju. Rezultati su
pokazali značajna poboljšanja u odnosu na originalne radove,
potvrdili značajan uticaj korišćenja više slika po uzorku, ali i
pokazali da se broj uzoraka po klasi mora dobro izvagati.

ZAHVALNICA
Prikazani rezultati dobijeni su u okviru istraživanja na

projektima III-43007 i III-47003 koje finansira Ministarstvo
prosvete, nauke i tehnološkog razvoja Republike Srbije.

LITERATURA
[1] IPBES, “Summary for policymakers of the global assessment report on

biodiversity and ecosystem services of the Intergovernmental Science-
Policy Platform on Biodiversity and Ecosystem Services. S. Díaz, J.
Settele, E. S. Brondizio E.S., H. T. Ngo, M. Guèze, J. Aga,” Bonn,
2019.

[2] P. F. M. Verdonschot, “Evaluation of the use of Water Framework
Directive typology descriptors, reference sites and spatial scale in
macroinvertebrate stream typology,” Hydrobiologia, vol. 566, no. 1, pp.
39–58, Aug. 2006.

[3] G. W. Hopkins and R. P. Freckleton, “Declines in the numbers of
amateur and professional taxonomists: Implications for conservation,”
Anim. Conserv., vol. 5, no. 3, pp. 245–249, Aug. 2002.

[4] F. C. Jones, “Taxonomic sufficiency: The influence of taxonomic
resolution on freshwater bioassessments using benthic
macroinvertebrates,” Environ. Rev., vol. 16, no. NA, pp. 45–69, Dec.
2008.

[5] “CS231n Convolutional Neural Networks for Visual Recognition:
Image Classification.” [Online]. Available:
http://cs231n.github.io/classification/. [Accessed: 23-Dec-2019].

[6] D. A. Lytle et al., “Automated processing and identification of benthic
invertebrate samples,” J. North Am. Benthol. Soc., vol. 29, no. 3, pp.
867–874, 2010.

[7] N. Larios et al., “Stacked spatial-pyramid kernel: An object-class
recognition method to combine scores from random trees,” in 2011
IEEE Workshop on Applications of Computer Vision, WACV 2011,
2011, pp. 329–335.

[8] S. Kiranyaz et al., “Classification and retrieval on macroinvertebrate

image databases,” Comput. Biol. Med., vol. 41, no. 7, pp. 463–472,
2011.

[9] H. Joutsijoki et al., “Evaluating the performance of artificial neural
networks for the classification of freshwater benthic
macroinvertebrates,” Ecol. Inform., vol. 20, pp. 1–12, Mar. 2014.

[10] J. Raitoharju et al., “Benchmark database for fine-grained image
classification of benthic macroinvertebrates,” Image Vis. Comput., vol.
78, pp. 73–83, Oct. 2018.

[11] D. Milošević et al., “Application of deep learning in aquatic
bioassessment: Towards automated identification of non-biting
midges,” Sci. Total Environ., vol. 711, p. 135160, Apr. 2020.

[12] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[13] G. Martinez-Munoz et al., “Dictionary-free categorization of very
similar objects via stacked evidence trees,” 2010, pp. 549–556.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, 2012, vol. 2, pp. 1097–1105.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2016, vol. 2016-Decem,
pp. 770–778.

[16] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition
Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec.
2015.

[17] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arxiv.org, 2012.

[18] “Keras: The Python Deep Learning library.” [Online]. Available:
https://keras.io. [Accessed: 24-Jan-2020].

[19] “TensorFlow: An end-to-end open source machine learning platform.”
[Online]. Available: https://www.tensorflow.org/. [Accessed: 24-Jan-
2020].

[20] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” in 3rd International Conference for Learning
Representations, 2015.

[21] J. Jordan, “Setting the learning rate of your neural network,” 2018.
[Online]. Available: https://www.jeremyjordan.me/nn-learning-rate/.
[Accessed: 24-Jan-2020].

ABSTRACT
Aquatic insects and other benthic macroinvertebrates are mostly

used as bioindicators of the ecological status of freshwaters.
However, an expensive and time-consuming process of species
identification represents one of the key obstacles for reliable
biomonitoring of aquatic ecosystems. In this paper, we proposed a
deep learning-based method for species identification that we
evaluated on several available public datasets (FIN-Benthic,
STONEFLY9, and EPT29) along with our CHIRO10 dataset. The
proposed method relies on three deep learning techniques used to
improve robustness when training is done on a relatively small
dataset: transfer learning, data augmentation, and feature dropout.
The results for all datasets were obtained using 256×256 images and
averaging on 10 data splits in training (50%), validation (20%), and
test (30%) sets. The results show significant improvement compared
to original contributions and confirms that there is a considerable
gain when there are multiple images per specimen.

Species identification for aquatic biomonitoring using

convolutional neural networks and deep learning

Aleksandar Milosavljević, Đurađ Milošević and
Bratislav Predić

AI 2.1.6

	005_AII2.2.pdf
	I. Introduction
	II. Materials and Methods
	A. Database
	B. Baseline deep learning models
	C. Network architecture and model training

	III. Results
	IV. Conclusion
	Acknowledgment
	References

