

Abstract— An algorithm that calculates the feasible robot joints’

accelerations based on a new forward dynamics algorithm while

considering the actuators’ force/torque saturations and achieves a

realistic simulation of robot movements is given in this paper.

While the most used forward dynamics algorithm in the literature,

Walker and Orin’s Method 1, calculates robot forward dynamics

by executing Recursive Newton-Euler Algorithm (RNEA) n + 1

times, where n is the number of degrees-of-freedom (DoFs),

algorithm used here solves forward dynamics using the modified

RNEA (mRNEA) only once. Owing to that, this algorithm is very

efficient. Furthermore, the computational complexity of the

algorithm is even more significant when used for robot simulation

as it does not require calculating joint torques as inputs for

forward dynamics, unlike other methods. Another benefit of the

proposed method is the ease of development and implementation

for a specific robot. The proposed mRNEA and its application

within the forward dynamics algorithm are demonstrated using a

serial 4-DoF spatial disorientation trainer as an example.

Index Terms—Robot, Forward dynamics, Joint accelerations,

Simulation system, Recursive Newton–Euler algorithm

I. INTRODUCTION

A robot simulation verifies the feasibility of programmed

movements, and if necessary modifies them. It also calculates

the values of forces and moments acting on robot links and

joints that is essential in robot design. For this, robot simulation

has to solve robot forward and inverse dynamics problems.

Forward dynamics (FD) solves the motion from the forces,

while inverse dynamics (ID) solves the forces from the motion

[1]. ID is used within dynamic model-based control methods,

and for FD calculations. FD is used mainly in simulation

purposes.

FD calculates the joint accelerations ()ktq

at a time instant

tk, the joint velocities 1()kt +q of the next interpolation cycle

time (Δt) and joint positions q(tk+1) at the end of the next Δt. FD

accounts for the joint torques u(tk); the inertial, gravitational,

and Coriolis forces of the robot links; forces and moments

acting on the end effector; and the friction forces and moments

of the joints.

When a robot is considered as a continuous nonlinear

system, after obtaining ()ktq , the velocity 1()kt +q and position

q(tk+1), tk+1 = tk + Δt are computed using a numerical integration

method, i.e., Runge–Kutta, with an integration step Δt [2]. On

Vladimir Kvrgic is with the Institute Mihajlo Pupin, University of Belgrade,

15 Volgina, 11060 Belgrade, Serbia, vladimir.kvrgic@pupin.rs.

Jelena Vidakovic is with the Lola Institute, Kneza Viseslava 70a, 11030
Belgrade, Serbia, jelena.vidakovic@li.rs).

the other hand, ID determines the joint torques u(tk) at time

instant tk which are required to generate the motion specified

by the joint accelerations, and consequently, the velocities and

positions. This is accomplished by using the current velocities,

current positions, the forces and moments acting on the end

effector, and the friction forces and moments of the joints.

One of the challenges in robot simulation is to derive

algorithms that are computationally efficient and are also easy

to apply to a specific robot.

The ID of a manipulator with n DoFs can be solved by well-

known equations of motion which represent its joint space

dynamic model

 () () () () e, + =T
H q q +C q q q +g q J q k u ,

(1)

where q , q , and q are n × 1 vectors of the joint accelerations,

velocities, and positions, respectively; H(q) is n × n generalized

robot mass (inertia) matrix; (),C q q is an n × n matrix

specifying the centrifugal and Coriolis effects; g(q)

is an n × 1

vector of gravity terms; ke is a 6 × 1 vector of the external forces

and moments on link n; J(q) is a 6 × n Jacobian matrix; and u

is an n × 1 vector of the input joint torques/forces. The diagonal

terms of the mass matrix are related to the inertias of the

corresponding DoF, and the off-diagonal terms express the

inertial couplings between the DoFs [3].

From Eq. (1), it can be seen that for time instant tk, the joint

torques/forces are linear functions of the joint accelerations

()ktq when q(tk) and ()ktq are given. These equations can be

obtained explicitly with the Lagrange formulation (LF) which

contains the matrix H(q) and vectors (),C q q q , g(q), and

e()TJ q k . Consequently, the joint accelerations ()ktq can be

computed by solving the following system of n linear equations

 e() (, ,),= −H q q u u q q k (2)

 e e(, ,) (,) () () . = + + T
u q q k C q q q g q J q k

(3)

The LF method for derivation of robot equations of motion

provides a compact analytical form containing the mass matrix

H(q), and a bias vector u that denotes joint torque

contributions that do not correlate with the joint accelerations

Vladimir Kvrgic, Jelena Vidakovic

Calculation of achievable robot joint

accelerations based on a new robot forward

dynamics algorithm

ROI 1.3.1

mailto:vladimir.kvrgic@pupin.rs
mailto:jelena.vidakovic@li.rs

[4–10]. Therefore, when the LF is used, the joint accelerations

()ktq (within one interpolation cycle) can be computed by

solving the system of n linear equations, where n is number of

manipulator DoFs. Although it is not complex to solve FD

using LF, this method is typically used for manipulators when

n ≤ 3 because of the very high computational complexity of the

LF: O(n4).

Robot dynamic models should be derived in recursive form

in order to be computational efficient [5]. In contrast to the LF,

the computational complexity of the RNEA is O(n). Reference

[11] developed a recursive LF; however, the computational

complexity of the recursive LF is O(n3).

Walker and Orin [6,7] employed the RNEA for computing

the FD and presented four methods to solve the joint

accelerations. Their method 1 (WO method 1) remains the

simplest and the most recommended in the literature [2,5].

According to this method, torque u is computed using the

RNEA. Further, each column hi, i = 1 to n, of matrix H is

computed as the torque vector given by the RNEA.

In [12], a modified Recursive Newton-Euler Algorithm

(mRNEA) for derivation of dynamic model of robot

manipulator is presented. The mRNEA gives explicitly the

mass matrix H and the bias vector u , in a similar manner as

LF. Owing to that, it is easy to use in the FD computation,

which executes the mRNEA only once.

The additional calculation of the input-joint-torque u, Eqs.

(2), had to be performed within a robot simulation system. With

the method presented in [12], input-joint-torque calculation is

performed within the FD algorithm, and therefore, the

computational complexity of the simulation system is

additionally reduced. As a result, the simulation system has to

solve ID only once within each interpolation cycle, in

comparison to simulation systems which use, for example, WO

method 1, and which solve ID n + 2 times.

Proposed FD algorithm is computationally very efficient,

with O(n) complexity.

The rest of the paper is organized as follows. Section II

presents the proposed approach for efficient FD calculation and

its implementation in a robot simulation system. Section III

depicts the proposed FD algorithm for open-chain manipulators

with n DoFs. A toy model for the 4-DoF spatial disorientation

trainer (SDT) is also presented in Section IV. The FD

algorithm, which calculates the achievable motor velocities in

each interpolation cycle based on the actuator torque/force

saturations, is presented in Section V. Finally, concluding

remarks are given in Section VI.

II. ACHIEVABLE JOINT ACCELERATIONS CALCULATION

A path planner of the robot controller transforms the motion

commands into a series of successive positions of robot

joints/actuators. As they are sent to the servo controller at

constant time intervals Δt, they correspond to the desired

joint/actuator velocities of 1() (() ())i k i k i kq t q t q t t+= −  , which

can be considered constant within each Δt (up-to-date

controllers have Δt between 0.01 s and 0.003 s). Thereafter, the

path planer sends the desired joint velocities to the speed

controllers of the actuators, whose task is to keep them constant

within each Δt.

Since each joint velocity can be considered constant within

each Δt, and since the current velocity ()i kq t and given

acceleration ()i kq t are known (calculated within the path

planer), the joint velocity in the next interpolation cycle is

1() () ()i k i k i kq t q t q t t+ = +  , which is depicted in Fig. 1.

Fig. 1. Example of given joint velocity change.

Herein, a method for obtaining equation (2) explicitly with

the mRNEA is proposed. Consequently, a method which

calculates ()ktq

using the mRNEA only once is proposed. The

presented FD algorithm utilizes the current values of q(tk) and

()ktq , the given values of q(tk+1) and 1()kt +q calculated in the

path interpolator, and ke. First, it checks if the desired positions

and velocities are feasible. If they are not, it limits their values

in accordance with their maximum/minimum possible values.

Based on this, the algorithm calculates the desired joint

accelerations 1() (() ())i k i k i kq t q t q t t+= −  . Next, the mRNEA

calculates the joint torques/forces u required for the desired

joint motions. In the next step, the algorithm calculates the

required actuator torques ua, whose capabilities are examined.

Unachievable torques/forces are replaced with the

maximum/minimum possible, with the aim that the FD

algorithm determines the achievable accelerations. Other joint

accelerations keep their values obtained from the path

interpolator.

Herein, within the simulation system, only attainable motor

velocities and positions are sent from the path planner to the

speed controller during each Δt. Consequently, joint forces and

moments are calculated based on the attainable velocities and

accelerations, so that their realistic values are obtained.

The FD simulation can be used in a stage of the robot design

process, in which case it enables the proper design of bearings

and links.

III. FD ALGORITHM BASED ON MRNEA

Herein, the FD algorithm based on mRNEA for open–chain

manipulators with n DoFs is presented.

A 4 × 4 homogenous transformation matrix (HTM) that

transforms point coordinates from frame j to frame i is j
iT , and

from the base frame to frame i is Ti. The matrix j
iT contains a

3 × 3 orientation matrix
j j j j

i i i i=  D x y z and a 3 x 1

position vector
j

ip .

ROI 1.3.2

The linear acceleration of the robot link i centre of mass

is

Tcm cm cm cm cm cm()i xi yi zi i i i i i iv v v= = +  +    v v ω r ω ω r , (4)

where    
T Tcm cm cm cm cmˆ

i xi yi zi xi yi zi i ir r r r r r= = =r D r is the

position of the link i centre of mass with respect to the

coordinates of link i expressed in the base coordinates. This

vector in the coordinates of link i is  
Tcmˆ ˆ ˆ ˆi xi yi zir r r=r . A vector

cross product is denoted with , and ωi, iω , and iv are the link

angular velocity, angular acceleration, and linear acceleration,

respectively, i = 1 to n. Equation (4) can be rewritten as

 cm

1 1

i i i

i ik k ikj k j

k k j k

q q q
= = =

= + v b b , i = 1 to n, (5)

where bik

and bikj

are 3 × 1 vectors. The total force Fi and total

moment Ni exerted on link i, obtained from the NE equations,

are

  
TT cm cm cm

i xi yi zi i xi yi ziF F F m v v v g= = −  F , (6)

  
T cm cm()i xi yi zi i i i i iN N N= = + N I ω ω I ω . (7)

The mass of link i is denoted as mi, g is Earth’s acceleration and
cm

iI is the 3 × 3 moment of the inertia matrix of link i about the

centre of mass of that link expressed in the base coordinates.

Equations (5) and (6) yield

 
T

1 1

(0 0)
i i i

i i ik k ikj k j

k k j k

m g q q q
= = =

= − + + F b b , i = 1 to n. (8)

Equation (7) can be rewritten as

1 1

i i i

i ik k ikj k j

k k j k

q q q
= = =

= + N d d , i = 1 to n,

(9)

where dik

and dikj are 3 × 1 vectors. The effects of the external

forces and moments,  
TT

e e e=k f n ,

acting on the end effector

are well-known as

 e ,n n= +f F f (10)

T

e e e e e e e e e e e e e ,n i y z z y z x x z x y y xp f p f p f p f p f p f = + + − − − n N n (11)

where
T

e e e e e
ˆ

x y z np p p= =  p D p is the position of the external

force with respect to the coordinates of link n expressed in the

base coordinates. This vector in the coordinates of link n is
T

e e e e
ˆ ˆ ˆ ˆ

x y zp p p=   p . Equations (8) and (10) yield

1

,
i

i i ik k
k

q
=

= + F e e (12)

  
T

1

(0 0)
i i

i i ikj k j

k j k

m g q q
= =

= − + e b , i = 1 to n–1, (13)

  
T

e
1

(0 0)
n n

n n ikj k j
k j k

m g q q
= =

= − + +e b f , i = n, (14)

 ik i ikm=e b , i = 1 to n. (15)

Similarly, Eq. (9) can be replaced with

1

i

i i ik k
k

q
=

= + N d d , (16)

1

i i

i ikj k j
k j k

q q
= =

= d d , i = 1 to n. (17)

From robot dynamics, the force fi

and moment ni

exerted on

link i by link i – 1 in the base coordinate frame, is well–known

to be

T

1i xi yi zi i if f f += = +  f F f , (18)

T *

1 1,i xi yi zi i i i i i in n n + += = + +  +   n n N l F p f (19)

where
T

* cm

i xi yi zi i il l l = = + l p r ,
1 1i i i



+ += −p p p .

The mass of the end effector can be included in the mass

of link n. In accordance with Eqs. (10)–(19), fi

and ni

can be

calculated as

1 1

n i n n n

i k jk k jk k
k i k j i k i j k

q q
= = = = + =

= + +   f e e e , i = n to 1, (20)

1
1 1

1
*

1 1 1 2

1 c a1 a 2 a 3

()

()

 , to 1 ,

i i

i i i ik k i i ik k
k k

n i n n n

i k jk k jk k
k i k j i k i j k

i i i i i

q q

q q

i n

+
= =

+

= + = = + = + =

+

= + + +  +

+  + +

= + + + + =

 

    

n n d d l e e

p e e e

n n n n n

 (21)

where cin , a1in , a2in , and a3in are 3 × 1 vectors, as follows:

ROI 1.3.3

c 1 1

(1) (1) (1) (1)

(1) (1) (1) (1)

(1) (1) (1) (1)

n n n n n n

xn yn zn zn yn y n z n z n y n

yn zn xn xn zn z n x n x n z n

zn xn yn yn xn x n y n y n x n

d l e l e p f p f

d l e l e p f p f

d l e l e p f p f

+ +

+ + + +

+ + + +

+ + + +

= +  + 

+ − + − 
 

= + − + − 
 + − + − 

n d l e p f

, i = n, (22)

*

c 1

* *

(1) (1)

* *

(1) (1)

* *

(1) (1)

i i i i i i

xi yi zi zi yi yi z i zi y i

yi zi xi xi zi zi x i xi z i

zi xi yi yi xi xi y i yi x i

d l e l e p E p E

d l e l e p E p E

d l e l e p E p E

+

+ +

+ +

+ +

= +  + 

+ − + − 
 

= + − + − 
 + − + − 

n d l e p E

,

1

1

n

i k
k i

+
= +

=E e , i = n – 1 to 1, (23)

  

1

a1
1 1

1

T

1a1 2a1 a1 1 2

()

() ()

()

.... ,

i

xik yi zik zi yik k
k

i i

i ik i ik k yik zi xik xi zik k
k k

i

zik xi yik yi xik k
k

i i ii i

d l e l e q

q d l e l e q

d l e l e q

q q q

=

= =

=

 
+ − 

 
 = +  = + −
 
 
 + −
  

=



 



n d l e

n n n

    1a1 2a1 a1 1 1 2 2....i i ii i i i i i i ii i ii= +  +  + n n n d l e d l e d l e , (24)

 i = n to 1,

 

1
* *

(1) (1)
1

1 1
* * *

a2 (1) (1) (1)
1 1

1
* *

(1) (1)
1

1a2 2a2 (1)a2 1 2 1

()

()

()

i

yi z i k zi y i k k
k

i i

i i i k k zi x i k xi z i k k
k k

i

xi y i k yi x i k k
k

i i i i i

p E p E q

q p E p E q

p E p E q

q q q

+

+ +
=

+ +

+ + +
= =

+

+ +
=

+ +

 
− 

 
 =  = −
 
 
 −
  

=  



 



n p E

n n n ,
T

* * *

1a2 2a2 (1)a2 (1)1 (1)2 (1)(1)i i i i i i i i i i i+ + + + +=        n n n p E p E p E ,

(1)
1

n

i k jk
j i

+
= +

=E e , i = n – 1 to 1, a2n =n 0 ,

(25)

  

* *

2

* * *
3

2 2

* *

2

T

(2)a3 a3 1 2 2

()

()

()

,

n

yi zkk zi ykk k

k i
n n

ia i kk k zi xkk xi zkk k

k i k i
n

xi ykk yi xkk k

k i

i i in i n

p E p E q

q p E p E q

p E p E q

q q q q

= +

= + = +

= +

+ +

 
− 

 
 =  = −
 
 
 −
  

=



 



n p E

0 0 n n

  * *
(2)a3 a3 (2)(2)i i in i i i i nn+ + +=    0 0 n n 0 0 p E p E ,

n

kk jk
j k=

=E e , i = n – 2 to 1, a3 (1)a3n n−= =n n 0 .

(26)

In order to reduce the number of counts, the vector 1i+n

can be included in the vectors cin , a1in , a2in , and a3in . In this

way, Eq. (21) is transformed into

 c a1 a 2 a3()i i i i i
   = + + +n n n n n q , i = n to 1, (27)

where  
T

1 2 nq q q=q is an n × 1 vector, cin is a 3 × 1

vector, and a1in , a2in , and a3in are 3 × n vectors. They are

given in the following equations:

c (1)c ci i i+
 = +n n n , (28)

 a1 1a1 2a1 a1

1 1 2 2

....

() () ,

i i i in

n n

k k k k k k nn n nn
k i k i= =

   =

 
= +  +  +  

 
 

n n n n

d l e d l e d l e
 (29)

1 1 1 1

a2 1 2 2 2 3 2 4 2 (1)(1) 2

1 1 1
* * *

(1)1 (1)2 (1)3

1
*

(1)4 (1)(1) 2

....

() () ()

() ,

n n n n

i k a k a k a k a n n a
k i k i k i k i

n n n

k k k k k k
k i k i k i

n

k k n n a
k i

− − − −

− −
= = = =

− − −

+ + +
= = =

−

+ − −
=

 
 = 

 


=   




 



   

  



n n n n n n

p E p E p E

p E n

(30)

3 2

* * * * *
a3 1 33 1 2 44 (1)(1)

1 1

()
n n

i i n n i nn
i i

− −

− −
= =

 
 =  +    

 
 n 0 0 p E p p E p E p e . (31)

The forces and moments exerted on link i by link i − 1 in

the coordinates of link i − 1 are

T TT T

1 1
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆandi xi yi zi i i i xi yi zi i if f f n n n− −

 = = =  =  f D f n D n . (32)

The projection of ni

along the axis of motion of joint i is

 T
1i iiu −=z n , (33)

where zi–1

is a unit vector of the axis of motion, given in the

first three elements of the third column of the matrix Ti.

Consequently, using Eqs. (22)–(33), the joint torques ui are

1

n

i ij j i
j

u h q u
=

= + , i=1 to n, (34)

T

1 a1 a 2 a 3
1

()
n

ij j i i i i
j

h q −
=

  = + + z n n n q ,

(35)

 T
c1i iiu −

 =z n .

 (36)

Herein, ()i kq t and ()i kq t are used to calculate hij and iu .

ROI 1.3.4

The computations needed to solve the linear system of

Eq. (34) in order to compute ()i kq t can be performed using

Gaussian elimination.

IV. NUMERICAL EXAMPLE OF 4-DOFS SPATIAL

DISORIENTATION TRAINER

The spatial disorientation trainer (SDT) is designed as a 4-

DoFs manipulator with rotational axes, Fig 2. Herein,

 
T

1 1 1 1 0a c s =p ,  
T

2 20 0 d =p ,
3 4 5

  = = =p p p 0 .

Fig. 2. (a) 3D model of the four DoFs SDT. (b) Coordinate frames of the SDT.

The vectors cin , a1in , a2in , and a3in , Eqs. (22)–(31), for

the SDT are

4c 4 4 4= + n d l e , 3c 3 3 3= + n d l e , *

2c 2 2 2 2 3= +  + n d l e p E ,

*

1c 1 1 1 1 2= +  + n d l e p E , where 3 3 4= +E e e , 2 3 2= +E E e , (37)

4 4

4a1 4 4 4 4 a1
1 1

()k k k k k
k k

q q
= =

= +  = n d l e n ,

3 3

3a1 3 3 3 3 a1
1 1

()k k k k k
k k

q q
= =

= +  = n d l e n ,

2 2

2a1 2 2 2 2 a1
1 1

()k k k k k
k k

q q
= =

= +  = n d l e n ,

1a1 11 1 11 1 11a1 1()q q= +  =n d l e n , (38)

 

 

4a1 41a1 42a1 43a1 44a1

41 4 41 42 4 42 43 4 43 44 4 44 ,

 =

= +  +  +  + 

n n n n n

d l e d l e d l e d l e

 3a1 3a1 4a1 31a1 32a1 33a1 44a1

4 4 4

1 1 2 2 3 3 44a1
3 3 3

() () () ,k k k k k k k k k
k k k= = =

    = + =

 
= +  +  +  

 
  

n n n n n n n

d l e d l e d l e n

 2a1 2a1 3a1 21a1 22a1 33a1 44a1

4 4

1 1 2 2 33a1 44a1
2 2

() () ,k k k k k k
k k= =

     = + =

 
 = +  +  

 
 

n n n n n n n

d l e d l e n n

 1a1 1a1 2a1 11a1 22a1 33a1 44a1

4

1 1 22a1 33a1 44a1
1

() ,k k k
k=

     = + =

 
  = +  

 


n n n n n n n

d l e n n n
 (39)

4a2 =n 0 ,
3 3a2

 =  =p 0 n 0 ,

 4a2 3a2
 = =n n 0 0 0 0 ,

* * *

2a2 2 31 2 32 2 33
 =     n p E p E p E 0 ,

* * * * *

1a2 1 21 2 31 1 22 2 32 2 33
 =  +   +    n p E p E p E p E p E 0 , (40)

where

E31 = e41 + e31, E32 = e42 + e32, E33 = e43 + e33, E21 = e31 + e21,

E22 = e32 + e22,

 *
2a3 2 44
 = n 0 0 0 p E ,  * * *

1a3 1 33 1 2 44() =  + n 0 0 p E p p E ,(41)

where E44=e44.

Fig. 3. (a) Link torques ui calculated using RNEA and mRNEA. (b) Link
accelerations of SDT.

In this numerical example, the consecutive link positions

()i kq t , velocities ()i kq t , and accelerations ()i kq t of the SDT

are used as the input. Based on these data, and the inertial and

geometric parameters of the SDT links, the torques ui are

calculated using RNEA and mRNEA. The same results were

obtained using both algorithms, Fig. 3(a). Consequently,

solution of the linear system of Eqs. (34) gave the values of

()i kq t that coincides with the input accelerations, Fig. 3(b).

ROI 1.3.5

V. FD ALGORITHM RELATIVE TO MANIPULATOR ACTUATORS

Similar to Eq. (1), the motion equations for the

manipulator relative to the torques/forces of the robot actuators

can be written as

 a a ea a() (, ,) =H q q +u q q k u , (42)

a ea a a ea(, ,) (,) () () sign()v s = + +T
u q q k C q q q+g q J q k +F q F q . (43)

Herein, Ha(q), a ea(, ,)u q q k , and ua relate to the actuator

rotors. Fv

denotes an n × n diagonal matrix of viscous friction

coefficients fvi. The static friction torques are considered as

Coulomb friction torques; Fs is an n × n diagonal matrix of the

Coulomb friction constants. Herein, sign()q denotes an n × 1

vector whose components are given by the sign functions of

single joint velocities.

If certain absolute value of uai exceeds its limit, it is

reduced to the maximum possible. These achievable values of

uai are then used in the following linear system of n equations

to calculate the achievable (realistic) joint accelerations iq :

a a a

1

n

ij j i i

j

h q u u
=

= − , i = 1 to n. (44)

VI. CONCLUSIONS

An algorithm which calculates the achievable joint

accelerations in each interpolation cycle based on the FD model

and actuators’ capabilities was given in this paper. Presented

algorithm enables the setting of only attainable joint velocities

within each interpolation cycle as determined from the joint

acceleration by taking into account the achievable actuator

torques. As a result, a precise simulation of the robot

movements is provided. This algorithm can indicate to the

operator that the programmed parameters of the movements are

not achievable. Furthermore, calculation of the realistic forces

and moments of the robot joints can be achieved when the

simulation system is used in the design phase.

In presented simulation, the mRNEA that gives the mass

matrix H and the bias vector u of a dynamic model was used.

Consequently, mRNEA allows for solving FD by calculating

ID only once. It was shown that proposed FD algorithm does

not need to calculate the input vector u of the FD algorithm,

which additionally increases the computational efficiency of

the presented method. Compared with the other methods given

in the literature, the algorithm presented herein is one of the

most efficient ones. Apart from that, it is very simple to develop

and implement.

ACKNOWLEDGMENT

This research is supported by the Ministry of Education,

Science and Technological Development of Serbia.

REFERENCES

[1] E. Otten, “Inverse and forward dynamics: models of multi–body

systems,” Philosophical Transactions of the Royal Society of London,

Series B: Biological Sciences, 358(1437) (2003) 1493-1500.
[2] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, “Dynamics,” in:

Robotics: Modelling, Planning and Control, Springer–Verlag London

Limited, 2009, pp. 247–302.
[3] M. Hirschkorn, J. Kövecses, “The role of the mass matrix in the

analysis of mechanical systems,” Multibody Syst. Dyn., 30 (2013)

397–412.
[4] R. Featherstone, D. Orin, Dynamics, in: Handbook of robotics, B.

Siciliano, O. Khatib (Eds.), Springer–Verlag London Limited, 2016,

pp. 35–65.
[5] R. Featherstone, D. Orin, “Robot Dynamics, Equations and

Algorithms,” IEEE international conference on robotics and

automation (ICRA), San Francisco, CA, 24–28 (2000) 826–834.
[6] M. Walker, D. Orin, “Efficient dynamic computer simulation of robotic

mechanisms,” Trans. ASME, J. Dynamic Systems, Measurement &

Control: 104 (1982) 205–211.
[7] M. Walker, D. Orin, “Dynamics,” in: Robot motion: Planning and

Control, M. Brady, J. Hollerbach, T. Johnson, T. Lozano–Perez, M.

Mason (Eds.), MIT Press, 1984, pp. 51–126.
 [8] M. Walker, “Kinematics and Dynamics,” in: Handbook of industrial

robotics, S.Y. Nof (Eds.), John Wiley and Sons, Inc., 1985, pp. 80–95.

[9] L. Tsai, “Dynamics of Serial Manipulators,” in: Robot analysis: the
mechanics of serial and parallel manipulators, John Wiley and Sons,

Inc, 1999, pp. 372–423.
[10] R. Featherstone, Rigid Body Dynamics Algorithms, Springer, 2008.

[11] J. Hollerbach, “A recursive Lagrangian formulation of manipulator

dynamics and a comparative study of dynamics formulation
complexity,” IEEE Transactions on Systems, Man, and Cybernetics, 10

(11) (1980) 730–736.

[12] V. Kvrgic, J. Vidakovic, “Efficient method for robot forward dynamics
computation,” Mechanism and Machine Theory 145 (2020) (10368) 1-

25, DOI: 10.1016/j.mechmachtheory.2019.103680.

ROI 1.3.6

