
 

1 

Abstract—The nonlinear feedback control system applied to the 

direct current - DC motor is proposed in this research. Nonlinear 

mathematical model has been obtained using dead zone, Coulomb 

and viscous friction. The system stability has been analyzed using 

Lyapunov stability theory. The effectiveness and the comparison 

of the performance between linear and nonlinear control 

algorithm have been validated using Matlab/Simulink software. 

From the conclusions, based on the simulation and experimental 

results that have been provided, it is easy to see that nonlinear 

control systems are more suitable and have a better reach for 

controlling position. The validity of using feedback linearization 

in DC motors has been proven. 

 

Index Terms—feedback linearization; nonlinear systems; 

nonlinear control; identification  

 

I. INTRODUCTION 

Position control in a direct current motor (DC) has been one 

of the most fundamental and challenging tasks, that has been 

largely studied for decades. Many studies have been done to 

model electrical machines. For example, serial DC motor has 

often been modeled as linear object. On the other hand, models 

in which motor current or flux are found as essential parameters 

are considered to be nonlinear [1]. This paper presents the 

design and implementation concerning both, linear and 

nonlinear models for the system. They are obtained for 

identification and control purposes. The major nonlinearities in 

the system, such as Coulomb friction and dead zone, are 

investigated and integrated in the nonlinear model [2].  

In the different types of application accurate control of position 

in DC machines is a great challenge for engineers. Disparate 

controllers have been proposed to lead the position of DC 

machines into the desired value. For example Proportional-

Integral-Derivative (PID) controller is a popular controller in 

industries due to simple structure, low cost and easy to 

implement. It provides reliable performance for the system if 

PID parameter is identified properly. But it suffers due to lack 

of robustness [1]. The linear approximation, of the nonlinear 

state space representation of the series DC motor,  
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around the equilibrium point and PI controller design the 

tracking performance is deteriorated in the periods in which the 

speed is reduced. This is due to the fact that the input signal 

u(𝑡) is limited to a minimum of 0 [V]. That is, in this condition 

the motor is actually operating in open loop [3]. 

Besides linear, there are plenty of nonlinear controllers: the 

fuzzy logic and genetic – based new fuzzy models [4], artificial 

neural networks [5], adaptive control technique [6], and others. 

It is important to make this comparison to find out under 

what conditions a technique presents a superior performance 

over the other one and thus have the certainty when it is useful 

to implement nonlinear controllers, which have greater 

complexity [7]. 

Modelling a nonlinearity is often a very complicated 

challenge. One of the first steps in the synthesis of a control 

system is to create a mathematical model, because it saves time 

and it brings the cost-effectiveness. 

The main objective of this research is the development and 

later implementation of a nonlinear control system, by the 

feedback linearization method, for a laboratory installed DC 

motor, SRV02 Rotary Servo Base Unit, which has been 

considered as a single-input-single-output (SISO) system.  

Feedback linearization is an approach to nonlinear control 

design which has attracted a great deal of research interest in 

recent years. By a combination of a nonlinear transformation 

and state feedback (feedback linearization), the nonlinear 

control design is reduced to designing a linear control law [8]. 

The central idea of the approach is to algebraically transform a 

nonlinear system dynamics into a (fully or partly) linear one, so 

that linear control techniques can be applied. This differs 

entirely from conventional linearization in that feedback 

linearization is achieved by exact state transformations and 

feedback, rather than by linear approximations of the dynamics 

[9]. This technique has been successfully implemented in many 

applications of control, such as industrial robots, high 

performance aircraft, helicopters and biomedical dispositifs, 

more tasks used the methodology are being now well advanced 

in industry [10].  

II. LINEAR MODEL OF SYSTEM DYNAMICS 

Constructing an accurate model is a pivotal stage in practical 

control problems. An appropriately developed system model is 

essential for reliability of the designed control. A DC series 

motor is an example of a simple, controlled process that can 

serve as a vehicle for the evaluation of the performance of the 

various controllers [4]. 

A schematic diagram of the DC motor is given in Fig. 1. 
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Fig. 1. SRV02 DC motor armature circuit and gain train [11] 

 

The equations that describe the motor electrical components 

are as follows:  

 

 𝑉𝑚(𝑡) = 𝑅𝑚𝐼𝑚(𝑡) + 𝐿𝑚

𝑑𝐼𝑚(𝑡)

𝑑𝑡
+ 𝑒𝑏(𝑡)   (1) 

 

 𝑒𝑏(𝑡) = 𝑘𝑚𝜔𝑚(𝑡)   (2) 

 

where 𝑉𝑚  , 𝑒𝑏 ,  𝑘𝑚 and 𝜔𝑚 are motor voltage, back 

electromotive voltage, back electromotive voltage constant and 

speed of the motor shaft, respectively. Since the motor 

inductance 𝐿𝑚 is much less than its resistance 𝑅𝑚 , it can be 

ignored [11]. Solving the system of equations for motor 

current 𝐼𝑚 , we get an electrical equation of DC motor: 

 

 𝐼𝑚(𝑡) =
𝑉𝑚(𝑡) − 𝑘𝑚𝜔𝑚(𝑡)

𝑅𝑚

.   (3) 

 

The linear model can be obtained using the Second Newton’s 

Law of Motion and connection between moment of inertia of 

the load 𝐽𝑙 and of the motor shaft 𝐽𝑚, speed of the load shaft 𝜔𝑙, 

viscous friction acting on the motor shaft 𝐵𝑚 and on the load 

shaft 𝐵𝑙 ,  total torque applied on the load 𝜏𝑙 and on the motor 

𝜏𝑚, with resulting torque acting on the motor shaft from the 

load torque denoted as 𝜏𝑚𝑙:    

 

 𝐽𝑙

𝑑𝜔𝑙(𝑡)

𝑑𝑡
+ 𝐵𝑙𝜔𝑙(𝑡) = 𝜏𝑙(𝑡)   (4) 

 

 𝐽𝑚

𝑑𝜔𝑚(𝑡)

𝑑𝑡
+ 𝐵𝑚𝜔𝑚(𝑡)  + 𝜏𝑚𝑙(𝑡)  = 𝜏𝑚(𝑡)   (5) 

 

so the mechanical equation is: 

 

 𝐽𝑒𝑞

𝑑𝜔𝑙(𝑡)

𝑑𝑡
+ 𝐵𝑒𝑞𝜔𝑙(𝑡) = 𝜂𝑔𝐾𝑔𝜏𝑚(𝑡)   (6) 

   

 

where  𝐽𝑒𝑞 and 𝐵𝑒𝑞  are total moment of inertia and damping 

term. 𝜂𝑔  and 𝐾𝑔 are, respectively, the gearbox efficiency and 

the total gear ratio. 

Combining electrical and mechanical equations, assuming 

that motor torque is proportional to the voltage, the final 

equation becomes: 

 

 (
𝑑

𝑑𝑡
𝜔𝑙(𝑡)) 𝐽𝑒𝑞 + 𝐵𝑒𝑞,𝑣𝜔𝑙(𝑡) = 𝐴𝑚𝑉𝑚(𝑡)   (7) 

 

where the equivalent damping term is given by: 

  

 
𝐵𝑒𝑞,𝑣 =  

𝜂𝑔𝐾𝑔
2𝜂𝑚𝑘𝑡𝑘𝑚 + 𝐵𝑒𝑞𝑅𝑚

𝑅𝑚

 

 

  (8) 

 

where the 𝜂𝑚 and 𝑘𝑡 are the motor efficiency and the current-

torque constant respectively. The actuator gain equals: 

 

 𝐴𝑚 =
𝜂𝑔𝐾𝑔𝜂𝑚𝑘𝑡

𝑅𝑚

     (9) 

 

Linear mathematical model that defines the relationship 

between voltage and angular position of the load shaft 𝜃𝑙 is: 

 

 𝐽𝑒𝑞𝜃̈𝑙(𝑡) + 𝐵𝑒𝑞,𝑣𝜃̇𝑙(𝑡) = 𝐴𝑚𝑉𝑚(𝑡). (10) 

 

Choosing 𝑦 = 𝜃𝑙 as output variable and 𝑢 = 𝑉𝑚 as input 

signal, state equation of the system is obtained as follows: 

 

 𝐽𝑒𝑞𝑦̈(𝑡) + 𝐵𝑒𝑞,𝑣𝑦̇(𝑡) = 𝐴𝑚𝑢(𝑡). (11) 

 

 

 
 

Fig. 2.  Block diagram of a linear system 

 

III. EXPERIMENTAL VERIFICATION OF THE OBTAINED LINEAR 

MATHEMATICAL MODEL 

Responses of the system represented with the block diagram 

in the Fig. 2 are shown in the Fig. 3 and Fig. 4. After recording 

the responses of the object, comparisons were made with the 

responses obtained by simulations of the linear model, for step 

and sinusoidal inputs.  

 

 
 Fig. 3.  Experimental results: comparison between real and model data for step 

input 
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 Fig. 4.  Experimental results: comparison between real and model data for 

sinusoidal input 

From this simulated example, an important conclusion can 

be drawn. Simulated linear model of the plant does not match 

well response of the real system. It is obvious that mathematical 

model of the series DC motor is nonlinear. 

IV. FEEDBACK LINEARIZATION 

In this section, the conditions for the linearizing 

transformation and nonlinear feedback allowing the DC motor 

to be controlled are outlined. Of particular interest will be the 

coordinate transformation also known as diffeomorphism, and 

the feedback law which will allow it to be accomplished. 

    Feedback linearization approach differs from the classical 

linearization (about the desired equilibrium point) in that no 

approximation is used; it is exact. Exactness, however, assumes 

perfect knowledge of the state equation and uses that 

knowledge to cancel the nonlinearities of the system. Since 

perfect knowledge of the state equation and exact mathematical 

cancellation of terms are almost impossible, the 

implementation of this approach will almost always result in a 

close-loop system, which is a perturbation of a nominal system 

whose origin is exponential stable. The validity of the method 

draws upon Lyapunov theory for perturbed systems [12] (that 

can be further studied in Chapter 9 of literature [12]). 

  Consider the single – input – single – output nonlinear SISO 

system [12]: 

 

 
𝒙̇ = 𝒇(𝒙) + 𝑔(𝒙)𝑢 

y = h(x) 
(12) 

 

where f(x), g(x) and h(x) are sufficiently smooth in a domain 

𝐷 ⊂ 𝑅𝑛 (the mapping  f : D ⟶ 𝑅𝑛 , g : D ⟶ 𝑅𝑛 are vector 

fields on D) and  𝒙̇ = [𝑥1 𝑥2 … 𝑥𝑛 ]𝑇 is a state vector. It is 

necessary to find a state feedback control 𝑢 , that transforms the 

nonlinear system into an equivalent linear system. Clearly, 

generalization of this idea is not possible in every nonlinear 

system: there must be a certain structural property that allows 

performing in such a manner of cancellation. 

Using feedback to cancel nonlinearities requires the nonlinear 

state equation to have a structure: 

   Definition [12]: 

 

 𝒙̇ = 𝑨𝒙 + 𝐵𝛾(𝒙)[𝑢 −  𝛼(𝒙)] (13) 

 

where  A is n ⨯ n and B is n ⨯ p matrix, the functions 𝛼 : 𝑅𝑛⟶ 

𝑅 𝑝, 𝛾 : 𝑅𝑛⟶ 𝑅 𝑝 ⨯ 𝑝 are defined on domain 𝐷 ⊂ 𝑅𝑛 that 

contains the origin. Furthermore, two conditions must be 

satisfied. The first one is that the pair (A, B) must be 

controllable. The second one is that γ(x) must be nonsingular 

for all x ∈ D. This is consequence of the control law form: 𝑢 =

𝛼(𝒙) +
1

𝛾(𝒙)
𝑣 that provides a new control signal 𝑣. 

   Even if the state equation does not have the structure (13), 

sometimes it is possible to execute feedback linearization for 

another choice of variables. Therefore, a more comprehensive 

definition is given [12]: 

A nonlinear system:  

 

 𝒙̇ = 𝒇(𝒙) + 𝐺(𝒙) 𝑢 (14) 

  

where f : D ⟶ 𝑅𝑛 and G : D ⟶ 𝑅𝑛 ⨯ 𝑝 are sufficiently 

smooth on a domain 𝐷 ⊂   𝑅𝑛, is said to be feedback 

linearizable (or input – state linearizable) if there exist a 

diffeomorphism T : D ⟶ 𝑅𝑛  such that  𝐷𝑧 = T(D) contains the 

origin and the change of variables 𝒛 = 𝑇(𝒙) transforms the 

system (14) into the form: 

 

 𝒛̇ = 𝐴𝒛 + 𝐵𝛾(𝒙)[𝑢 − 𝛼(𝑥)] (15) 

  

with (A,B) controllable and γ(x) nonsingular for all x ∈ D. 

 

 

V. DETERMINATION OF RELATIVE DEGREE 

The relative degree of a linear system is defined as the 

difference between the poles (degree of the transfer function's 

denominator polynomial number) and zeros (degree of its 

numerator polynomial). To extend this concept to nonlinear 

systems more mathematical treatment will be needed. The 

following definition is given and repeated here for 

completeness:  

Definition [13]: Given the Single Input – Single Output 

System, SISO, outlined in (12), it is said to have relative degree 

𝑟 at a point 𝑥0  if: 

i) 𝐿𝒈 𝐿𝒇
𝑘 ℎ(𝒙) = 0 for all 𝑥 in a neighborhood of 𝑥0 and all 

𝑘 < 𝑟 − 1 

ii) 𝐿𝒈 𝐿𝒇
𝑟−1 ℎ(𝒙) ≠ 0 

The terms 𝐿𝒈 and 𝐿𝒇
𝑘  represent the Lie derivative of 

ℎ(𝑥) taken along 𝒈(𝑥) and k − times along 𝒇(𝑥) , respectively.  

VI. NONLINEAR MATHEMATICAL MODEL 

The nonlinear mathematical model of the DC motor was 

obtained considering the speed dependent friction nonlinearity. 

Many models of friction, widely studied in the literature, differ 

mainly in the description of the moment of friction. These 

models, generally, describe the friction torque as a static and/or 

dynamic function of angular velocity [14]. Here, as well as in 

[14], Tustins friction model was adopted as follows: 𝑇𝑓𝑟𝑖𝑐𝑡 =

𝑇𝑠𝑡𝑟𝑖𝑏𝑒𝑐𝑘 + 𝑇𝑣𝑖𝑠𝑐𝑜𝑢𝑠 = 𝑇𝑐  sgn( 𝜃𝑙̇) + (𝑇𝑠 − 𝑇𝑐)𝑒
(

 𝜃𝑙
̇̇

𝜃̇𝑠
)

sgn( 𝜃𝑙̇) +

𝐵 𝜃𝑙̇ , 

where 𝐵 is the viscous friction coefficient and 𝜃̇𝑠 is Stribeck 

velocity. It includes viscous friction part 𝑇𝑣𝑖𝑠𝑐𝑜𝑢𝑠𝑣  and Stribeck 

function 𝑇𝑠𝑡𝑟𝑖𝑏𝑒𝑐𝑘  that is a decreasing function in relation to the 

velocity increase and with upper bound equal to the static 

friction torque 𝑇𝑠, at zero velocity, and lower bound equal to 
AUI 2.2.3



 

the Coulomb friction torque 𝑇𝑐. In this approach, the constant 

portion of the Coulomb model is replaced by Stribeck function. 

The viscous component of friction torque is a linear function, 

and friction curve of Stribeck model is nonlinear function, and 

they will be considered separately. Therefore, the nonlinear 

mathematical model of the DC motor is addopted  as follows: 

 

𝐽𝑒𝑞𝜃̈𝑙 + 𝑇𝑠𝑡(𝜃𝑙̇) +  𝐵𝑒𝑞,𝑣 𝜃𝑙̇ = 𝐴𝑚𝑉𝑚          (16) 

 
TABLE I 

THE NUMERICAL VALUES OF THE PLANT PARAMETERS 

 

Parameters Values and units 

Jeq 0.0021 kg𝑚2 

Rm 2.6 Ω 

kt 0.0077 Νm/A 

ηm 0.69  

ηg 0.9 

Kg 70 

 

In order to identify friction for the above described DC motor, 

two distinct experiments, cited here, were performed in paper 

[14]. In the first, the control voltage is increased gradually at 

the rate of 0.05 V/s and at the instant when the motor shaft starts 

to rotate, control voltage is recorded. Ten measurements were 

done and by these values averaging, the static friction torque 

was obtained. From (16), it can be seen that if the velocity is 

kept constant, the friction torque is proportional to the control 

signal 𝑉𝑚. In the second experiment, a linear PI control 

algorithm was used to stabilise angular velocity to various 

constant values, and after transient time, the average values of 

the control voltage and the angular velocity are calculated and 

recorded. The part of the obtained friction curve 𝑇𝑠𝑡(𝜃𝑙̇), for 

low angular velocity values, where the Stribeck effect is 

dominant, is shown in Fig. 5. It is assumed that friction 

characteristics are symmetrical, for negative and positive 

values of angular velocity. Applying standard optimization 

techniques with Matlab, the friction parameters were obtained, 

as follows: 

 

𝑇𝑠𝑡 =  0.0174𝑠𝑔𝑛(𝜃̇𝑙) +

0.0087𝑒
−

𝜃̇𝑙

0.064 𝑠𝑔𝑛(𝜃̇𝑙),   𝐵𝑒𝑞,𝑣 = 0.0721  

 

(17) 

 
Fig. 5. Friction characteristics of DC motor [14] 

In order to overcome the jump discontinuity of the proposed 

friction model, at 𝜃̇𝑙 = 0, that jump is replaced by a line of 

finite slope, up to a very small threshold ε, as is shown in Fig. 

5 [14]. The slope is bounded by red dashed lines defined by this 

threshold. 

This the line of finite slope will be used only for comparison 

with the hyperbolic tangent function (Fig.  6), because method 

of feedback linearization requires differentiable functions (as 

can be seen from the given definitions in the previous section). 

In this way only Coulomb and viscous friction is modeled and 

static friction is neglected. Choosing 𝑥1 = 𝜃𝑙  , 𝑥2 = 𝜃̇𝑙 as state 

variables, 𝑦 =  𝜃𝑙 as measured variable and 𝑢 = 𝑉𝑚 as control 

variable and denoting nonlinearity by 𝑓(𝒙), state equation of 

the system was obtained as follows: 

 

  

𝑥̇ = [
𝑥̇1

𝑥̇2
] = [

0 1

0
−𝐵𝑒𝑞,𝑛

𝐽𝑒𝑞

] 𝒙 + [
0

−1
] 𝑓(𝒙)

+ [

0
𝐴𝑚

𝐽𝑒𝑞

] 𝑢   

(18) 

 
 

𝑦 = [1 0]𝒙  
(19) 

 

 
 Fig. 6.  Differential function of the hyperbolic tangent 

   

To ensure that this model is an equivalent representation of the 

original system, an experiment was performed, with the results 

shown below on Fig. 7 for step and Fig. 8 for sinusoidal 

response. 

 

 

 
 Fig. 7.  Experimental results: comparison between real and model data for step 

input 
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Fig. 8.  Experimental results: comparison between real and model data for 

sinusoidal input 

VII. EXPERIMENTAL RESULTS  

Applying Definition [12] to the system (18) – (19) yields: 

 

 𝐴 = [

0 1

0 − 
𝐵𝑒𝑞,𝑛

𝐽𝑒𝑞

] (20) 

 

 𝐵 =  [

0
𝐴𝑚

𝐽𝑒𝑞

] (21) 

 

 

 

𝛼(𝑥) =  
𝐽𝑒𝑞

𝐴𝑚

𝑓(𝑥) 
(22) 

 

 𝛾(𝑥) = 1.   (23) 

First condition is met: 

 

 𝑈 = [𝐵 𝐴𝐵 𝐴2𝐵      … 𝐴𝑛−1𝐵]. (24) 

 

Order of system is n = 2 and, because rank U =n, the pair (A, 

B) is controllable: 

 𝑈 = [𝐵 𝐴𝐵] = [

0
𝐴𝑚

𝐽𝑒𝑞

𝐴𝑚

𝐽𝑒𝑞
−

𝐵𝑒𝑞,𝑛

𝐽𝑒𝑞
2

]. (25) 

System transformation is not required and all functions are 

smooth and differentiable. γ(x) is not equal to zero, so the 

second condition is also met. With both conditions fulfilled 

feedback linearization is allowed. 

   The first derivative of the system (18) – (19) output does not 

depend on the control signal, which means that the relative 

degree of the system is not 1:  

 

 
𝑦̇ =  𝐿𝒇 ℎ(𝒙) + 𝐿𝒈ℎ(𝒙) 𝑢. (26) 

 

 
𝐿𝑔 ℎ(𝒙)  =  0 and  𝐿𝑓 ℎ(𝒙) =  𝑥2 (27) 

 

 
𝑦̈ = 𝑥̇2 = − 

𝐵𝑒𝑞,𝑛

𝐽𝑒𝑞

𝑥2 − 𝑓(𝒙) +
𝐴𝑚

𝐽𝑒𝑞

 𝑢  (28) 

 

 

 

𝐿𝑓
2ℎ(𝒙) =  − 

𝐵𝑒𝑞,𝑛

𝐽𝑒𝑞

𝑥2 − 𝑓(𝒙)  (29) 

 

 
𝐿𝑔 𝐿𝑓  ℎ(𝒙) =  

𝐴𝑚

𝐽𝑒𝑞

 (30) 

 

Conclusion is that relative degree of this system is equal to 

the system order 𝑟 = 2. The desired time – domain 

specifications for controlling the position of the load shaft are: 

overshoot: PO = 0% and settling time: 𝑡𝑠 ⩽ 2.3 𝑠.  Choosing 

the control signal 𝑢  in the following form: 

 

𝑢 =  
1

𝐿𝑔 𝐿𝑓 ℎ(𝒙)
[−𝐿𝑓

2ℎ(𝒙) + 𝑣]

=
𝐽𝑒𝑞

𝐴𝑚

[
𝐵𝑒𝑞,𝑛

𝐽𝑒𝑞

𝑥2 + 𝑓(𝒙) + 𝑣] 

  (31) 

 

  with 𝑣 =  −𝐾0𝑥1 − 𝐾1𝑥2 +  𝐾0𝑥𝑟𝑒𝑓 , where 𝐾0 = 400, 

𝐾1 = 40 were obtained by calculating the minimum damping 

ratio and natural frequency, which were required to meet the 

specifications; 𝑥𝑟𝑒𝑓 is desired output or reference. Linear 

control is obtained in the same way, with the same coefficients, 

but without canceling the nonlinearity:  

 

 𝑢𝑙 =  −𝐾0𝑥1 − 𝐾1𝑥2 +  𝐾0𝑥𝑟𝑒𝑓  (32) 

 

      The experiments were performed with Quanser rotary 

servo motor, SRV02. This model is equipped with the optical 

encoder and tachometer, for motor position and speed 

measuring, respectively [14]. 

 

  

Fig. 9.  Experimental results: position tracking of step signal for the linear and 

nonlinear controller 

 
Fig. 10.  Experimental results: position tracking of sine signal for the linear and 

nonlinear controller 

 

 
 
Fig. 11.  Detail from Fig. 10. 
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 Fig. 12.  Experimental results: position tracking of chirp signal for the linear 

and nonlinear controller 
 

It can be observed, from the Fig. 9, Fig. 10, Fig. 11 and Fig. 12 

that the specific requirements are met. The overshoot and the 

settling time are in the domain of desired values. Furthermore, 

it is observed that the nonlinear controller is more convenient 

and has better achievements for position management. 

VIII. CONCLUSION 

The feedback linearization technique was used for 

controlling the nonlinear system. The primary aim was to 

corroborate this method for controlling position of DC motor. 

First, the modelling of an object has been obtained. 

After it has been experimentally confirmed that linear 

equations did not describe this object well enough, the 

nonlinear model was presented by including Stribeck model of 

the friction. Using the concise presentation of the feedback 

theory the conditions for accomplishing this technique were 

considered. In order to satisfy those conditions an 

approximation of the function, which represent nonlinearity, 

was found as hyperbolic tangent. Then the fulfillment of the 

conditions for the synthesis of the control law was proven. 

At the end it could be observed, through the experiment and 

analysis results, that the desired response (output signal of the 

model reference) was tracked by the plant response. The 

comparison of the linear and nonlinear controller is given. The 

results show that the controllers, synthesized in this way, are 

able to satisfy desired position, but that nonlinear controller 

gives better outcome. 
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