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Abstract—In this paper, a novel discrete Phase Locked Loop
(PLL) algorithm is introduced to obtain an optimal grid
synchronization. One of the major problems in the grid syn-
chronization process, which occurs due to grid imperfections,
is higher order harmonics which are treated as disturbances
in the electric power system. The proposed control design
of PLL is implemented with a reduced order observer of
periodic disturbances and with RST controller structure. The
design is performed completely in the discrete time domain,
and two cases were considered: the first case is with one
higher order harmonic, and the second case is with two higher
order harmonics in the system. The theoretical findings are
substantiated by extensive simulation examples.
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I. INTRODUCTION

One of the important aspects of designing grid connected
power electronics systems is the synchronization of the
inverter output with the grid itself. Synchronization with the
grid means matching the phase and the magnitude of the
inverter output voltage with grid voltage signal and implicitly
control of power factor, active and reactive power flow in
the system. If the grid is unbalanced, side effects such as
short circuits, failures and power outages can occur. Also,
due to the grid imperfections, higher order harmonics appear
in the electric power system. They are especially significant
and represent unwanted spectral components of a distorted
signal whose frequencies are equal to an integer product of
the base frequency. These polluting harmonics are treated as
disturbances in the system and consequently, it is necessary
to neutralize their influence in order of optimal functioning
of the electric power system.

Some modern solutions for efficient and reliable integra-
tion with grid of renewable energy sources are grid side
converters (GSC). These power electronics devices enable
the injecting or receiving of electric energy from the utility
grid and they must be precisely synchronized with grid
voltage [1,2]. There are several different algorithms for grid
synchronization and one of the most commonly used of them
is the Phase Locked Loop or PLL algorithm [3]. Among
existing PLL techniques, the Synchronous Reference Frame
(SRF-PLL) [4] is commonly utilized in power engineering
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applications. Also, there are other solutions such as Decou-
pled Double Synchronous Reference Frame PLL (DDSRF-
PLL) [5] or Double Second-Order Generalized Integrator
PLL (DSOGI-PLL) [6]. These algorithms perform excellent
with negligible grid imperfections and they can accurately
extract voltage synchronization signal when the grid is
unbalanced. In situations when the grid voltage contains
harmonics of higher order, large oscillations may appear
in the synchronization signal and then Multi-SOGI method
proposed in [7] could be used.

Achieving phase synchronization despite voltage sags and
higher order harmonics and identifying amplitudes and phase
angles of the polluting harmonics are essential for real-
time control of power systems. An effective PLL scheme
for efficient simultaneous identification and quantification of
grid unbalance and higher harmonics content is proposed in
[8]. However, the proposed method is described in continu-
ous time domain and the reliability of a discretized system
depends upon the approximation made to their continuous
equations. Some methods, as the Forward Euler, the Back-
ward Euler and the Tustin (Trapezoidal) numerical integra-
tion offer a good performance when used for continuous filter
discretization, but those methods, could be inadequate under
certain conditions, due to necessity of additional sample
delays. Therefore, in this paper procedure for multi resonant
PLL is completely implemented in the discrete domain
without using numerical discretization method. The main
reason is to obtain expressions that can be directly applied in
the implementation, i.e. to avoid the discretization procedure
that would otherwise be necessary.

The organization of this paper is such that in section 2
the grid voltage signal is characterized and vector notation
is introduced. The basic aspects of the PLL algorithm as well
as the new proposed modification of the algorithm applicable
in the discrete domain are given in section 3. Finally, the
results of the numerical simulation are presented in section
4.

II. GRID CHARACTERIZATION

A non-ideal 3-phase utility grid voltage in steady state can
be represented as [3]

ui =Up cos(ω0t− ki
2π

3
+ ϕp) + Un cos(−ω0t− ki

2π

3
+ ϕn)

+
∑
h

Uih cos(hω0t− ki
2π

3
+ ϕih) , (1)

where ki∈{a,b,c} = {0, 1,−1}. Variables Up, Un are ampli-
tudes and ϕp, ϕn are phases of the Fundamental Frequency
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Positive Sequence (FFPS) and Fundamental Frequency Neg-
ative Sequence (FFPN), respectively [4,10]. Magnitude ω0 is
the fundamental frequency which value is typically 2π ·50 rad

s
or 2π · 60 rad

s . The third term in (1) represents higher order
harmonics, i.e. Uih is amplitude and ϕih is phase of h-th
harmonic for phase i. If the grid voltage is balanced, without
asymmetrical voltage sags and higher order harmonics, it is
clear that Un = 0 and Uih = 0 [8].

In order to simplify the notation, (1) can be rewritten in
the phasor form

U = U1 +
∑
h

Uh , (2)

where U is the phasor corresponding to signal u. Phasors
in (2), U1 and Uh, can be represented by their positive and
negative sequence components

U1 = Upejω0t + Une−j(ω0t+ϕn) ,

Uh = Uphe
j(hω0t+ϕ

p
h) + Unh e

−j(hω0t+ϕ
n
h) ,

(3)

where it was assumed that FFPS voltage component is the
referent one with zero phase (ϕp = 0). It is common for
3-phase phenomena analysis to use rotating reference frame
(dq) instead of staionary (abc), so Park transformation [9] is
applied on (3) and one obtains

Udq = Ue−jω0t = Up + Une−j(2ω0t+ϕn)+

+
∑
h

Uphe

[
j(h−1)ω0t+ϕ

p
h

]
+ Unh e

[
−j(h+1)ω0t+ϕ

n
h

]
.

(4)

We can write Udq = ud + juq so (4) can be decoupled to d
and q components

ud = Up + Un cos(2ω0t+ ϕn)

+
∑
h

Uph cos
[
(h− 1)ω0t+ ϕph

]
+ Unh cos

[
(h+ 1)ω0t+ ϕnh

]
,

uq = −Un sin(2ω0t+ ϕn)

+
∑
h

Uph sin
[
(h− 1)ω0t+ ϕph

]
− Unh sin

[
(h+ 1)ω0t+ ϕnh

]
.

(5)

Finally, from (5) can be concluded if the grid voltage is
balanced and without polluting harmonics, d and q compo-
nents in the steady-state appears as DC values, ud = Up and
uq = 0.

III. THE PROPOSED PLL ALGORITHM

Ideal PLL structure is resistant to disturbances and asym-
metries and quickly and accurately determines the phase
angle of the grid voltage. PLL control loop is presented in
Fig. 1 where we have phase comparator that determines the
difference between the phase angle of the input quantity and
the estimated angle of the output quantity. This signal is fed
to the controller and the output signal from the controller
excites the signal generator which generates an estimated
value of the grid phase angle that follows the phase angle of
the input quantity. In the digital form of PLL algorithm, the
most common controller structure is the PI controller [10].

Phase
detector

Va Controller
Signal

generator θ̂

Figure 1: Generalized PLL control loop

Nowdays there are various modifications of the PLL algo-
rithm caused by the development of different implementation
techniques and different reference coordinate systems in
which the estimation of the grid phase angle is performed.
One of the most commonly used modifications is Syn-
chronous Frame PLL algorithm or SF-PLL algorithm [11].

SF-PLL algorithm is adapted synchronization algorithm to
the specifics of 3-phase systems, which conventional control
loop is presented in Fig. 2. By applying this variation of
the algorithm, the estimation is performed by setting one
component of the grid voltage to zero value and in that way
the estimated angle is connected to the vector representation
of the grid voltage.

PI
ω0 kT

s

θPLL0 +

αβ/dq

UβUα

Uq
Filter

Ud

Uq0

−

Figure 2: PLL control loop

The plant in PLL algorithm can be modelled by transfer
function Gp(s) = kT

s , where kT is linearization gain equal
to the grid voltage amplitude, kT = U . Filter in Fig. 2 is
not needed if utility voltage is balanced and without higher
order harmonics, but without it, PI controller can’t cope
with oscillations induced by imperfection of grid voltage
[8]. Accordingly, the main purpose of all advanced PLL
algorithms is to neutralize (filter) oscillatory components.

In this paper, SF-PLL algorithm with multi-resonant dis-
turbance observer was implemented in discrete time domain,
as illustrated in Fig. 3. Input variables in control loop shown
in Fig. 3 are measured phase voltages ua, ub and uc. After
applying Park transformation, 3-phase voltages ua, ub, uc are
transformed into ud and uq in a synchronously rotating 2-
phase system. For these transformed signals, observers were
designed to estimate value of higher order harmonics. Since
observers used for d and q axis are identical, only the q-
axis observer will be described in sequel. Finally, obtained
estimated grid frequency and angle are denote ω̂ and θ̂.

A. Observer design

Estimation is the process of evaluating the value of an
immeasurable quantity on the basis of available data [2].
In the field of control, it is of interest to estimate values
of disturbance signals and states of process. The algorithms
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Figure 3: PLL algorithm with multi-resonant observer (blocks ADC represent analog to digital converters)

used to perform this estimation are observers and in this
paper, multi-resonant observer was designed in discrete time
domain.

Discrete-time observer

After applying Park transformation and considering the
fact that a superposition of any two harmonic signals of equal
frequencies will give another harmonic signal of the same
frequency, (5) can be written as

uq = uq0 +
n∑
h=1

uqh ,

uqh = Uqhm sin(ωhkT − ϕqh) = Uqhm sin(θhk − ϕqh) ,
(6)

where Uqhm is total amplitude and ϕqh is the total phase
angle of h-th harmonic in dq reference frame, θh = ωhT
is discrete (digital) frequency, T is sample time and k is
ordinal number of samples in the discrete time domain.
Higher order harmonics are treated as disturbances in system
and reduced-order observer was designed to estimate values
of additional harmonics from measured signal. Estimation is
performed by imitating a process that generates magnitude of
interest. Hence, a linear system was constructed with impulse
response equal to the (6) [12]

uqh(k + 2)− 2 cos(θh)uqh(k + 1) + uqh(k) = 0 . (7)

In order to develop an reduced-order observer, a selection of
variable states was made [13]

x1(k) = uq(k) ,

x2h(k) = uqh(k) ,

x2h+1(k) = uqh(k + 1) .

(8)

In shifted discrete time domain variables are

x1(k + 1) = x1(k)−
n∑
h=1

x2h(k) +
n∑
h=1

x2h+1(k) ,

x2h(k + 1) = x2h+1(k) ,

x2h+1(k + 1) = −x2h(k) + 2 cos(θh)x2h+1(k) ,

(9)

or in matrix form

x(k + 1) =



1 −1 1 −1 1 . . .
0 0 1 0 0 . . .
0 −1 2 cos(θ1) 0 0 . . .
0 0 0 0 1 . . .
0 0 0 −1 2 cos(θ2) . . .
...

...
...

...
...

. . .


x(k) .

(10)

After selecting state vector x(k), it is convenient to
split state vector into to parts: a directly measurable
variables x1(k) and the remaining states x2:(k) =[
x2(k) x3(k) . . . x2h+1(k)

]T
[13]. Subsequently, (10)

can be rewritten as

x1(k + 1) = A11x1(k) +A12x2(k) ,

x2:(k + 1) = A21x1(k) +A22x2(k) ,
(11)

where

A11 = 1 ,

A12 =
[
−1 1 −1 . . . 1

]
2n

,

A21 =
[
0 0 0 . . .

]T
2n

,

A22 =


0 1 0 0 0 0 . . .
−1 2 cos(θ1) 0 0 0 0 . . .
0 0 0 1 0 0 . . .
0 0 −1 2 cos(θ2) 0 0 . . .
...

...
...

...
...

...
. . .


2n×2n

.

Mathematical model of reduce-order observer is

z(k + 1) = Aoz(k) +Guq(k) ,

x̂2:(k) = z(k) + Luq(k) .
(12)

where z is 2n×1 vector of internal observers states and Ao,
G and L are constant parameter matrices of dimension 2n×2,
2n × 1 and 2n × 1, respectively. Vector L is observer gain
matrix [13]. Parameter matrices Ao and G are determined
according to

Ao = A22 − LA12 ,

G = A21 − LA11 +AoL .
(13)
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The vector L is selected in such a way to place eigenval-
ues of Ao at desired locations [8]. Observer characteristic
polynomial is calculated on the basis of desired poles

fo(z) = z2n + p2n−1z
2n−1 + · · ·+ p1z + p0 . (14)

Accordingly, elements of the observer gain vector L can be
calculated from

fo(z) = det(zI −A22 + LA12) . (15)

After the observer gain vector L is determined, matrices Ao
and G can be calculated from (13). Finally, DC component
or utility signal component for synchronization can be re-
constructed by subtracting estimated harmonic signals from
the measured voltage

ûq0 = x1 −
n∑
h=1

x̂2h , (16)

where magnitude ûq0 is used as the input of PLL controller
[8].

B. Controller design

Controller was implemented in discrete time domain by
means of pole-placement procedure and RST synthesis [14].
In both time domains, desired closed loop characteristic
polynomial, i.e. poles of the system in closed loop are
selected. These poles completely determine stability and
behavior of the system in closed loop. Finally, parameters
of observer and controller are selected so to ensure that the
actual characteristic polynomial of the closed loop system
matches the desired one.

Discrete-time controller

Magnitude ûq0, calculated from (16), is input signal of
PLL algorithm, so observer transfer function relating uq and
uq0 is [8]

Go(z) =
Uq0(z)

Uq(z)
= ko

∏
h(z2 − 2z cos(θh) + 1)

fo(z)
, (17)

where z is complex variable in discrete time domain, fo(z)
is the characteristic polynomial of the observer and ko
is its gain. Observer transfer function must have zeros at
frequencies ωh and additional zeros are not allowed, since
this can make transfer function Go(z) improper (degree of
the polynomial in the numerator would be greater than the
degree of the polynomial in the denominator). Value of the
gain ko can be calculated from the fact that static gain of
(17) must be 1

lim
z→1

Go(z) = 1⇒ ko =
fo(1)∏

h(2− 2 cos(θh))
. (18)

RST controllers are a modern management solution in whose
structure there are two degrees of freedom of movement
and three polynomials - R, S and T . Namely, classic PID
controllers have one degree of freedom of movement and
can be effective in monitoring setpoints, but not so good in
eliminating disturbances. Accordingly, it is desirable to use

controllers that have a component of direct control and feed-
back control such as RST controllers. Typical structure of
RST controller is R(z)U(z) = −S(z)Y (z) + T (z)Rref (z),
where R(z), S(z) and T (z) are polynomials in RST con-
troller structure, Rref (z) is reference signal and Y (z) is
output signal.

As denote on Fig. 3 input signal to the controller is q
component of the grid voltage and the output is the estimated
grid frequency ω̂. Due to the reference signal is equal to zero,
as shown in Fig. 2, which implies that T (z) = 0, controller
form is

R(z)U(z) = −S(z)Y (z)⇒ R(z)Uq(z) = −S(z)Ω̂(z) ,
(19)

where R(z) is denominator, S(z) is numerator of the con-
troller transfer function, Ω̂(z) and Uq(z) are Z transforms
of the estimated frequency and q component of the grid
voltages, respectively. Observer is part of the controller so
structure of polynomials R(z) and S(z) should be [8]

R(z) = (z − 1)fo(z)R1(z) ,

S(z) = ko
∏
h

(z2 − 2zcos(θh))S1(z) ,

where R1(z) and S1(z) contain remaining factors to be
determined in the sequel. Additional integrator is paramount
for the ability of the control loop to follow grid angle
signal, which has ramp-like behavior [8]. As two integrators
are required to follow ramp signal without steady state
error, second integrator is in the plant transfer function
Gp(z) = kT

z−1 .

Characteristic polynomial of the closed loop system is

fc(z) = (z − 1)2fo(z)R1(z)+

+ kokTS1(z)
∏
h

(z2 − 2z cos(θh) + 1) .
(20)

Unknown parameters in (20) can be calculated from the
fact that actual characteristic polynomial of the closed loop
system must be equal the desired one. This means that
number of variables must be equal to the degree of the
characteristic polynomial and solution of minimal order is

R1(z) = 1, S1(z) = kp(z + σ) ,

where kp and σ are real constants. In fact, kp is the
proportional gain and σ = 1

Ti
is the reciprocal of the integral

time constant. Finally, obtained characteristic polynomial of
the closed loop system is

fc(z) = (z − 1)2fo(z)+

+ kokT kp(z + σ)
∏
h

(z2 − 2z cos(θh) + 1) .
(21)

In section IV, all previous consideration will be shown in
two different simulations: first is case with one harmonic in
system and other is case with two harmonics in system.
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IV. SIMULATION RESULTS

A. The case with one harmonic

The proposed PLL algorithm has been implemented and
tested through simulation in case when grid is symmetrical
until t = 0.1s, when fifth harmonic amplitude 0.2 [p.u.]
appears. In that case there is one polluting harmonic in
system (h = 1) and characteristic polynomial of closed loop
system given by (21), can be written as

fc(z) = (z − 1)2(z2 + p1z + p0)+

+ kokT kp(z + σ)(z2 − 2z cos(θ1) + 1) .
(22)

Desired characteristic polynomial is formed based on the
poles ai that determine stability and performance of the
system. Choosing a poles we make a compromise between
response speed, disturbance rejection properties, sensitivity
to measurement noise, robustness and other characteristics.
In this paper, a pair of dominant poles have natural frequency
equal to ω0 (ω0 = 2π · 50 rad

s ) and high damping (ξ ≥ 0.7),
while the remaining poles are located deeper within the unit
circle. Poles are

a1,2 = e
− ω0ξ√

1−ξ2
T±jω0T

,

a3 = e−2ω0T ,

a4 = e−4ω0T .

where T is sampling time chosen to satisfy Nyquist theorem.
In this case, polluting harmonic is at frequency ω1, so
sampling frequency is chosen so that it is equal ωs = 5ω1,
where T = 2π

ωs
and θ1 = ω1T . Desired characteristic

polynomial is

fc = (z − a1)(z − a2)(z − a3)(z − a4) . (23)

Higher order harmonic of interest is fifth harmonic which is
seen as harmonic at the frequency ω1 = 4·ω0 in dq reference
frame.

By equating desired characteristic polynomial (23) with
characteristic polynomial of closed loop system (22), ob-
server gain matrix and controller parameters are obtained:

L =
[
0.3982 0.5676

]T
,

kp = 0.3866 , σ = −0.8524 .

Phase voltages are shown in Fig. 4, while on Fig. 5 is
shown estimated frequency of grid voltage and on Fig. 6
is shown estimation error which represents the difference
between actual and estimated value of the phase angle.

Figure 4: Phase voltages

Figure 5: Estimated grid frequency

Figure 6: Phase estimation error

B. The case with two harmonics

The proposed PLL algorithm has been implemented and
tested through simulation in case when grid is symmetrical
until t = 0.1s, when fifth harmonic amplitude 0.2 [p.u.]
appears and then in t = 0.2s seventh harmonic amplitude 0.5
[p.u.] appears. In that case there are two polluting harmonics
in system (h = 2) and characteristic polynomial of closed
loop system given by (21), can be written as

fc(z) = (z − 1)2(z4 + p3z
3 + p2z

2 + p1z + p0)+

+ kokT kp(z + σ)(z2 − 2z cos(θ1) + 1)(z2 − 2z cos(θ2) + 1) .
(24)

As in the first case, desired characteristic polynomial is
formed based on the poles ai that determine stability and
performances of the system. A pair od dominant poles have
natural frequency ω0 = 2π ·50 rad

s and damping ratio ξ = 0.7,
while the remaining poles are located deeper within the unit
circle. Poles are

a1,2 = e
− ω0ξ√

1−ξ2
T±jω0T

,

a3,4 = e−2ω0T ,

a5,6 = e−4ω0T .

where T is sampling time chosen to satisfy Nyquist theorem.
In this case, polluting harmonics are at frequencies ω1 and
ω2 (ω1 < ω2), so sampling frequency is chosen so that it is
equal ωs = 5ω2, where T = 2π

ωs
, θ1 = ω1T and θ2 = ω2T .

Desired characteristic polynomial is

fc = (z − a1)(z − a2)(z − a3)(z − a4)(z − a5)(z − a6) .
(25)

Higher order harmonics of interest are fifth and seventh
harmonics which are seen as harmonics at the frequencies
ω1 = 4 · ω0 and ω2 = 6 · ω0 in dq reference frame,
respectively.
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By equating desired characteristic polynomial (25) with
characteristic polynomial of closed loop system (24), ob-
server gain matrix and controller parameters are obtained:

L =
[
0.4898 0.8004 −0.5634 0.2361

]T
,

kp = 551.391 , σ = −0.865 .

Figure 7: Phase voltages

Figure 8: Estimated grid frequency

Figure 9: Phase estimation error

Phase voltages are shown in Fig. 7, while on Fig. 8 is
shown estimated frequency of grid voltage and on Fig. 9
is shown estimation error which represents the difference
between actual and estimated value of the phase angle.

V. CONCLUSION

Most modern devices are connected to the grid via power
electronics devices and it is very important to achieve
synchronization between them. Magnitudes of interest for
grid synchronization are frequency and phase angle of grid
voltage. In this paper, we proposed PLL algorithm for grid
synchronization based on multi-resonant observer. Algorithm
is implemented with observer which estimate unknown val-
ues of polluting higher order harmonics which occur due to
the grid imperfection and we treat them as disturbances in
system. The proposed PLL algorithm designing process is
established as a simple four steps algorithm:

1) Choose the frequencies ωh of higher order harmonics
of interest.

2) Specify the desired closed loop polynomial fc(d).
3) Compute unknown parameters of controller (kp, σ) and

observer polynomial (p0, p1, · · · , p2n−1).
4) Compute observer matrix gain L.

Algorithm control loop is implemented in discrete time
domain. After algorithm designing, simulations were done in
case when fifth and seventh harmonics appear as disturbances
in the system. The results demonstrated the efficiency of the
proposed PLL algorithm which is capable of achieving phase
synchronization despite voltage unbalances and higher order
harmonics.
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