
Framework Library With Guidelines For

Effective TV Application Development

Nemanja Kovačev, Veljko Ilkić, Dejan Nađ, Nikola Vranić

Abstract – TV application development is becoming an

important field of software industry. As with the software

development in general, the aim is to build a high-quality and

cost-effective application which is as fast to build and as easy to

maintain as possible. We noticed several issues with the existing

approaches to TV application development. This paper presents a

framework with guidelines for effective TV application

development along with benefits of using this kind of framework

in solving those issues.

Index Terms – TV application; Android; Java; MVP; framework;

core; SDK.

I. INTRODUCTION

During the last decade, Android operating system [1] and

applications have become a significant part of software

industry. Android as an operating system has become

omnipresent in our surroundings – in phones, cars, wearables,

etc. One of such fields is TV application development. Along

with the increasing number of developers working on those

applications, a number of different approaches emerged.

During the development of TV applications we noticed that

most of the applications had the same code structure and a lot

of common features. We also observed that the existing

frameworks and methods for TV application development were

not efficient enough for the pace we needed to have. Regarding

that fact, and in order to speed up development process, reduce

code duplication and improve robustness of a product, we have

decided to construct a framework library to make a project

kick-off phase easier. We designed the application core to be

the starting point for the development of TV applications. The

core is written in Java and is platform independent as shown in

Fig. 1.

Nemanja Kovačev, RT-RK Institute for Computer Based Systems,

Narodnog fronta 23a, Novi Sad, Serbia (e-mail: nemanja.kovacev@rt-rk.com).

Veljko Ilkić, RT-RK Institute for Computer Based Systems, Narodnog

fronta 23a, Novi Sad, Serbia (e-mail: veljko.ilkic@rt-rk.com).

Dejan Nađ, RT-RK Institute for Computer Based Systems, Narodnog fronta

23a, Novi Sad, Serbia (e-mail: dejan.nadj@rt-rk.com).

Nikola Vranić, RT-RK Institute for Computer Based Systems, Narodnog

fronta 23a, Novi Sad, Serbia (e-mail: nikola.vranic@rt-rk.com).

The core connects the UI (User Interface) on one side

with the backend and database APIs (Application

Programming Interfaces) on the other side.

The way how the core is connected to other

components as well as the data flow between them is

shown in Fig. 2. The diagram shows how it is possible to

make a custom component by API implementation, i.e. a

backend handler which communicates with a different

backend or a player handler which uses a different player.

The diagram also shows how we introduced entities

which are common for all applications.

Fig. 1. Architecture overview

Fig. 2. Top view of the framework

II. THE DESIGN PATTERN

In this chapter we will present the design pattern we are

using for the development of TV applications. During the

application development we came to a conclusion that the

MVP (Model-View-Presenter) pattern [2] is the best design

pattern for TV application development. The application core

presents the model, Android application itself is the view and

SDK is the presenter. The model is an interface which defines

the data to be displayed, the view is a passive interface that

displays data and the presenter is the “middle-man” between

the model and the view. User events are passed from the view

to the presenter which updates the model. The model sends

events to the presenter which updates the view as shown in Fig.

3. In this framework the view is named the Scene and the

presenter is named the Scene Manager. The Scene sends

information to the Scene Manager via a scene listener interface

and the Scene Manager propagates that information to the

model. The model sends updated data to the Scene Manager

which updates the Scene via the refresh method.

III. COMPONENTS OF THE FRAMEWORK

 Here we will list and describe the crucial components of our

framework: Activities, Fragments, Scenes, Scene Managers,

SDK class and Information Bus.

A. Activities and Fragments

The Main Activity [3], [4] inside Android TV application

can be considered as an entry point for the framework, and at

the same time as the View entity of whole system. It is in

charge of drawing Android elements on the screen on request

from the core module by inflating fragment views [3] defined

in the scenes.

 Fig. 3. The Model-View-Presenter design pattern

It is registered on Information Bus, which will be explained

later in the text, as the listener of events from the core - it waits

for show, hide and destroy events submitted by the

AppHandler and does the appropriate actions on the scene

views.

B. Scenes and Scene Managers

Scenes are just passive Views [2] which contain fields and

methods. There are 4 graphical layers defined inside the

framework as shown in Fig. 4. This enables us to cover all

standard use cases for different TV applications and designs. A

Scene can be shown and managed in different graphical layers

which is more convenient for proper user experience. So a

scene can be placed inside the default layer, in overlay, as

notification and in the global layer (i.e. a global widget – such

as the volume bar – if it is visible, no other entity will accept

key events).

Scene managers are responsible for scene control – Scene

managers communicate via triggerAction method which

requires action type. Based on the type of action a manager

decides how a scene should be managed. The scene can be

shown in specified graphical layer, hidden or destroyed.

Fig. 4. Event propagation

C. SDK Class

Software Development Kit (SDK) is a Singleton class [2]

which contains instances of all handlers. Handler methods are

asynchronous and data is retrieved through the

AsyncDataReceive callback. In order to obtain the needed data,

a Scene will call its Scene Manager which will then directly

ask SDK for data via an appropriate handler and the data will

be received by the AsyncDataReceive callback.

The WorldHandler class contains instances of registered

scene managers. That class enables accessing a scene manager

that belongs to some other scene.

The AppHandler class controls the scenes switching

mechanism – this class takes care of which scene is active

(displayed). When Scene Manager’s action is triggered, the

AppHandler will delegate an event to the corresponding scene

(depending on the triggered action type) and then the Scene

will notify the AppHandler which will ensure scene switching.

The list of all handlers contained in the SDK is shown in

Table I.

TABLE I
THE LIST OF ALL HANDLERS IN THE SDK CLASS

WorldHandler AppHandler

DatabaseHandler AccountHandler

BluetoothHandler ChannelsHandler

DisplayHandler EpgHandler

FavoritesHandler NotificationHandler

PlayerHandler PrefsHandler

ProfilesHandler ReminderHandler

SearchHandler TimeHandler

TvHandler VodHandler

VolumeHandler UpdateHandler

ParentalControlHandler GuideHandler

RegionHandler ConfigurationHandler

PaymentHandler LanguageHandler

PackagesHandler DeviceHandler

CategoryHandler TrialHandler

ItemInfoHandler

D. Information Bus

Information Bus provides support for sending and receiving

events between different application modules. It’s a part of the

Observer design pattern [5]. Every event has an ID and a data

object and can be submitted and received by using the

Information Bus.

Fig. 4. Example of communication between application and backend

IV. THE USUAL SCENARIO

 Here we will describe the usual scenario of scene creation

and scene destruction in our TV applications.

A. Scene creation

The first step is to create a Scene class which extends the

generic UI core scene. The layout can be created in two ways –

one is to create a layout xml file [3] and the other way is to

dynamically create a layout inside a scene class. The second

step is to create a scene listener interface with methods needed

by the scene. This listener is used for sending request to the

Scene Manager. The third step is to create a Scene Manager

class which extends the generic UI core scene manager

followed by an override of the createScene method and

creation the scene object in the Scene Manager. And the final

step includes the call of the setScene method at the end of

createScene method in order to save the Scene instance.

B. Scene destruction

The destruction of a visible scene is performed by the

scene’s destroy method. Scene Manager triggers the destroy

action and calls the scene’s destroy method. Scene notifies the

AppHandler that it is destroyed. The AppHandler submits the

scene destroy event which is received by the Main Activity

which then destroys the scene’s view.

V. MEASUREMENT

 In this chapter we will present the measurement we

conducted.

Fig. 5. Measured project timelines

 Since our team is among the first teams to develop TV

applications there are still not many developers dealing with

the issues mentioned in our paper so the data in available

literature is scarce at the moment. The measurement was based

on our considerable experience in constructing TV

0 30 60 90 120 150 180 210

P
R

O
JE

C
T

P
H

A
SE

S

DURATION (days)

No framework Our framework Leanback

KICK-OFF

MP

LAUNCH

applications. Fig. 5 shows three projects with the same set of

features developed by our team. Each project was constructed

by different approach – using no framework whatsoever, using

our framework and using Android’s Leanback library. The

approach with no framework is the hardest and slowest because

there is no starting point so the development has to be done

from scratch. The approach with Leanback library has its

advantages in terms of templates and predefined features but it

is hard to customize. The approach with our framework is the

fastest since we have a good starting point – a basic TV

application with basic features (Channel list, Channel zapper,

TV guide, VoD) which can easily be customized.

VI. CONCLUSION

In this paper we have presented our approach to TV

application development. Our experience shows that the usage

of our framework library considerably reduces the amount of

code in the application, makes the code more readable and

easier to maintain and also shortens the time needed for coding

thus making TV application development significantly more

effective. By utilizing this framework we managed to reduce

time and effort for TV application development. The possible

downside of this approach is that it can be complicated during

the first few weeks of development for programmers who

haven’t had previous experience with TV application

development but that gets compensated in the later phases of

the development.

Although our method is more efficient in comparison to

other methods of TV application development [6], [7], [8], [9],

[10] there is still room for further improvements such as the

introduction of more common features and sub-library modules

for TV centric applications. Other improvements include data

and performance optimizations as well as support for different

Android versions and screen resolutions within the framework

by utilizing dynamic UI support.

ACKNOWLEDGMENT

This work was partially supported by the Ministry of

Education, Science and Technological Development of the

Republic of Serbia, under grant number: III_044009_2.

REFERENCES

[1] Official Android website – https://www.android.com

[2] K. Mew, Android Design Patterns and Best Practice, Birmingham,
United Kingdom: Packt Publishing Ltd, 2016.

[3] J. Horton, Android Programming for Beginners, Birmingham, United

Kingdom: Packt Publishing Ltd, 2015.
[4] B. Phillips, C. Stewart, B. Hardy, K. Marsicano, Android Programing:

The Big Nerd Ranch Guide, 2nd edition, Atlanta, USA: Big Nerd Ranch

Guides, 2015.

[5] H. Schildt, Java: The Complete Reference, 9th edition, USA: McGraw-

Hill Education, 2014.

[6] E. G. Lima and R. de Andrade Lira Rabêlo, "An architectural model for
communication between the iDTV and mobile devices," 2015

International Conference on Computing, Networking and

Communications (ICNC), Garden Grove, CA, pp. 1102-1105, 2015.
[7] Y. Wahyu, F. Oktafiani and Y. P. Saputera, "Development of Set Top

Box (STB) for DVB-T2 standard television based on android," 2014 8th

International Conference on Telecommunication Systems Services and
Applications (TSSA), Kuta, pp. 1-4, 2014.

[8] Zhonghong Xu, Lingjun Yang and Sanxing Cao, "Design and

implementation of mobile lightweight TV media system based on
Android," 2016 7th IEEE International Conference on Software

Engineering and Service Science (ICSESS), Beijing, pp. 730-733, 2016.

[9] M. Milanović, B. Pavlović, I. Petrović and T. Maruna, "One
implementation of UI TV application on adnroid STB," 2013 21st

Telecommunications Forum Telfor (TELFOR), Belgrade, pp. 724-726,

2013.
[10] S. Pravin and R. BalaKrishnan, "Set top box system with android support

using Embedded Linux operating systempaper," IEEE-International

Conference On Advances In Engineering, Science And Management
(ICAESM -2012), Nagapattinam, Tamil Nadu, pp. 474-478, 2012.

https://www.android.com/

