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Abstract— Fog Computing extends the Cloud Computing to 

the Edge of the network, closer to the things that produce and 

act on data including different types of devices, ranging from 

personal computers, laptops, workstations to IoT devices, 

wearable gadgets and sensors. The heterogeneity and variety of 

devices doesn’t make just the activities of application design 

harder, but serious effort is also required when it comes to 

configuration, deployment, re-deployment and testing of the 

applications executed in Fog environments and it is often time-

consuming, trial and error process. As the data could be 

produced and consumed at both Edge and Cloud, it means that 

application also needs to be compliant with given data privacy 

and security policies due to legal constraints, laws and 

regulations which restrict the freedom of data movement. 

Therefore, it should also be possible to move computation tasks 

between devices regardless of their location (Cloud or Edge), 

even in the case of different computing architectures, which 

means that the applications should be as flexible as possible. In 

this paper we focus on automating the deployment activities 

and increasing the flexibility of applications executed in Fog 

environment by providing a visual tool utilizing the concepts of 

metamodeling, automated code generation and container-based 

virtualization. 

 
Index Terms — Fog Computing, Container-based 

virtualization, Metamodeling, Internet of Things 

 

I. INTRODUCTION 

Fog Computing, also referred to as Edge Computing, is 

an emerging paradigm aiming to extend Cloud computing 

capabilities to fully exploit the potential of the Edge of the 

network where traditional devices, as well as new 

generations of devices – such as smart, wearable gadgets 

and mobile devices (the so-called “IoT devices”) are 

considered. It involves the research and application of 

enabling technologies that allow computation at the network 

Edge so that computing happens near data sources [1]. 

However, despite the rapid evolution of the data-

processing speed, the bandwidth of the network that carries 

data to and from the Cloud has not increased appreciably. 

Thus, with Edge devices generating more data, the network 

is becoming Cloud computing’s bottleneck. In these cases, 

the processing time of time-critical applications is often 

limited by the network delay [1][2]. Also, when we have a 

large number of devices sensing the information, uploading 

the data generated by them would induce additional network 

congestion, increasing this way the network delay, even 

further. In order to tackle network delay issues, we move the 

data processing closer to the data generators and consumers. 

The concept of enabling a computer to sense information 

 
Nenad Petrović is with the Faculty of Electronic Engineering, University 

of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail: 

nenad.petrović@ elfak.ni.ac.rs).  

 

without any human intervention has been applied to many 

other fields, such as healthcare, home technology, 

environmental engineering and transportation [1][2]. Due to 

such variety, the second major issue appears. Keeping the 

privacy and dealing with security of the information in more 

sensitive domains is crucial, in most cases regulated by law, 

and dramatically restricts freedom of data movement. Due to 

laws and regulations, in some cases the data is not allowed 

to leave the boundaries of the institution storing the data. 

Thus, in these cases, the data has to be processed within the 

Edge, instead of being uploaded over vulnerable network to 

the Cloud. 

There are two approaches to tackle this problem – move 

the data or move the computation tasks [2]. In this case, we 

focus on the latter – the computation task movement.  

The goal of the research is to explore state-of-the-art 

technologies and concepts in order to construct an execution 

environment which would give us ability to easily deploy 

and move computation tasks between devices with different 

computing architectures, located either in Cloud or Edge 

satisfying the given limitations and policies. As the result of 

the research, a visual tool for automated test and deployment 

of data processing applications in Fog environments is 

developed, utilizing the concepts of container-based 

virtualization as computation task abstraction and 

metamodeling approach for representation and abstraction 

of the application architecture in order to impose rules and 

constraints when it comes to computation task deployment 

and movement. User draws a deployment diagram of the 

application using the tool, which is later validated, translated 

to infrastructure management code and, finally, deployed to 

corresponding resources.  

In comparison with approach already presented in [9][11] 

where the focus is on Cloud applications and hypervisor-

based virtualization, this work extends the idea by 

introducing the support for Fog Computing and mixed 

architecture environment relying on container-based 

virtualization which is more suitable for the scenario when 

the tasks also have to be executed on low-power IoT 

devices.  

II. BACKGROUND 

In what follows, the underlying concepts and theoretical 

foundations of the developed tool are presented. 

- Container-based virtualization: Containers could be 

described as a lightweight virtualization approach that 

creates virtual environment at a software level inside the 

host machine, also known as operating system-level 

virtualization. It removes the overhead of using hypervisors 

by creating virtual machines in the form of containers (act as 

guest systems) thereby sharing the resources of the 

underlying host operating system. It provides different 
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levels of abstraction in which a kernel is shared between 

containers and more than one process can run inside each 

container. This way, the whole system can become more 

resource-efficient as there is no additional layer of 

hypervisor, and thus no full operating system which can 

occupy a lot of storage space for each virtual machine. 

Therefore, container-based virtualization is much more IoT-

devices friendly. Considering the fact that most IoT devices 

use low-power ARM CPUs, it was important to explore if 

there are compatible ports of container-based platforms. 

Fortunately, there is Docker ARM port compatible with 

Raspberry Pi, which is widely used container-based 

virtualization technology. Thus, we decided to use Docker 

containers as computation task abstraction in our execution 

environment, as they are lightweight, easily portable and 

also support popular ARM-based Linux devices, as 

Raspberry Pi which gives capability to move tasks between 

Cloud and Edge by using ARM computation task 

counterparts for each task in the system [3]. 

- Docker Swarm infrastructure: The underlying container 

management system is Docker Swarm, a native Docker 

technology which is fully supported by ARM Docker port, 

out of the box. There are two types of devices inside the 

cluster: master node and worker nodes. The Swarm is 

created at master node which generates a token which 

worker nodes use in order to join the Swarm. Master node is 

responsible for container management and service creation, 

allocating the right container to the right device which had 

joined the Swarm previously. As container repository, we 

use public Docker Hub repositories which should contain 

two versions of each task – ARM and x86, with same name 

but different suffix. This way, we ensure that, in case of 

computation task movement, the device can find the right 

container (ARM or x86). Fig.1 illustrates the Docker Swarm 

infrastructure [3]. 

 

 
Fig. 1.  Docker Swarm infrastructure 

 

 - Model-driven engineering: A software development 

methodology focused on creation and exploitation of 

domain models aiming at abstract representations of the 

knowledge, rather than computing concepts. The tool 

produced as an outcome of the research allows designers to 

use the modeling approach for deployment, re-deployment, 

analysis, optimization and architectural configuration of the 

applications that are executed in Fog environments. The user 

draws a diagram (model), which, translated into code, 

manages the deployment of the given infrastructure [4]. 

- Automated code generation: A mechanism which 

generates a computer program based on higher level 

abstractions defined by developer [4]. In our case, the 

deployment configuration given by a diagram is translated 

into code (Docker and shell commands). 

- Infrastructure-as-a-code: Approach where the code 

(possibly automatically generated from the model) is able to 

provide precise instructions to management tools that 

support the automated deployment and configuration of 

applications on the specified resources [5]. When it comes 

to our approach, Docker Swarm commands are used to 

manage the task allocation and deployment, while the tasks 

become Docker containers running on corresponding 

devices.  

- Metamodeling: Analysis, construction and development 

of rules, constraints, models and theories applicable and 

useful for modeling a predefined class of problems. In our 

tool, user-drawn models are defined and constrained by a 

metamodel, which defines the deployment diagram 

elements, their attributes, configuration parameters, relations 

and rules they have to comply with [4]. The deployment of 

the application contains devices which are able to execute 

tasks corresponding to Docker containers. The metamodel 

(Fig. 2.) consists of the following elements and relationships 

between elements, as given in Table I. 

 
TABLE I 

METAMODEL ELEMENTS OVERVIEW 

Name Description 

Deployment Deployment represents a highest level 

abstraction in the metamodel and 

contains devices executing allocated 

tasks.   

Device Represents a physical or virtual device 

executing a task given by a container. 

Considering that our execution 

environment use case is Fog Computing, 

we should consider heterogeneous 

devices (both IoT ARM-based devices 

and conventional x86 PCs) whose 

location could either Cloud or Edge. The 

location of the device is necessary in 

order to allocate the right tasks due to 

data privacy and other regulations. Also, 

it is important to keep track of memory 

available and allocated to tasks for each 

of the devices. Each device is actually a 

part of Docker Swarm infrastructure 

cluster as a worker which is executing a 

certain task. Therefore, in order to join a 

Docker Swarm cluster, we need to 

provide a valid Swarm master token. In 

that case, we also need an IP address in 

order to SSH (assuming that we have 

access to devices) and join them to the 

cluster. Otherwise, if devices already 

belong to some Swarm cluster, we can 

leave these two fields empty. In that 

case, we are used name attribute as alias 

to identify devices within the running 

cluster. In order to SSH, devices could 

require credentials in order to log in 

(username and password). 



 

Task Computation task abstractions, 

represented as Docker containers. In our 

case, they are PHP servers packed as 

Docker containers which execute data 

processing with arbitrary number of 

inputs and one output. All the containers 

should be present in Docker Hub public 

repository, and each of them should have 

also its ARM counterpart, so we could 

perform the computation task movement 

between devices. Each device, depending 

on its architecture, executes the 

corresponding container version. Also, 

each of the containers occupies a certain 

amount of memory which should not be 

larger than device memory available. 

Task Dependency A directed association, describing the 

fact that tasks can be connected to each 

other, so the output of one task can be 

used as the input of another one, which 

makes a computation flow. 

Execution Flow A sequence of inter-connected tasks, 

using Task Dependency relations. This 

abstraction is used in order to support the 

testing of the deployed services. 

Execution 

Environment 

For tasks, it represents the environment 

where each of them could be executed 

due to data movement constraints, legal 

regulations, security and privacy 

policies. According to this, some of the 

tasks are allowed to be executed only 

within the Edge of the network, without 

leaving the physical boundaries of the 

organization. On the other side, there are 

tasks whose execution location is not 

constrained, so they can be executed also 

in Cloud Each device physically resides 

in Cloud or Edge. Therefore, the 

metamodel constraint rules take care of 

matching execution environment 

matching for each of the tasks. 

 

 
Fig. 2.  Metamodel for deployment, testing and computation task 

movement in Fog environments supporting IoT devices 

 

 

As addition to the given metamodel, constraints and rules 

for given elements are also defined using the metamodeling 

platform. For example, each task needs to be inside one and 

exactly one device. One device can execute many tasks. 

However, each task needs to have all its inputs defined 

before testing, whether they come from the parameter list 

(set by user) or dependencies with other task. Also, the 

memory that task occupies should less or equal to memory 

available. Each device has its location as an attribute, which 

could be: Cloud, Edge or both. According to this, we should 

match the execution environment mapping between devices 

and tasks. This mechanism encapsulates the fact that some 

of the tasks process data whose movement is constrained 

due to legal regulations, security or privacy policies, 

therefore, it should be processed within the boundaries of 

the organization, without being sent to Cloud providers. The 

part of allocating the right version to right kind of device 

(ARM/x86) done within the code generation phase, and is 

defined inside the transformation code, when the 

corresponding suffix is appended.  

III. IMPLEMENTATION 

The tool is utilizing model-to-code transformations and 

Docker Swarm cluster management commands in order to 

automatically deploy the container-based application 

represented by user-created diagram. Fig. 3 presents the 

overview of components involved and operations performed 

to deploy the application given by a model, using the tool 

we have developed. 

 
Fig. 3.  Working principle overview 

 

 First, user models a container-based application using a 

set of given concepts and relationships between them inside 

the modelling environment. The modeling environment is 

developed using ADOxx meta-modeling platform [6] which 

provides the necessary capabilities to develop a GUI-

enabled modelling tool based on UML-alike metamodel, 

described using ADOxx Definition Language (a meta-

modelling language used by ADOxx platform). The main 

advantage of ADOxx meta-modeling platform is the support 

for creating a complete standalone product based on 

metamodel definition, including all the visual elements. 

Shapes are defined as value of GraphRep attribute for each 

element. 

 Once the modelling is done, it is possible to check if the 

model is valid. A set of rules based on the execution 

environment constraints are implemented within the 

metamodel in order to achieve this. For example, if we have 

a task that uses sensible data for computation, enforced by 

these rules, we can deploy it only to device which resides 

within the boundaries of the organization. After that, once 

the considered model is valid, the necessary transformations 

can be performed and the corresponding application is 

deployed. The previously mentioned rules and constraints 



 

are also described using ADOxx Definition Language. Fig. 

4. displays the screenshot of the modelling environment. 

 
Fig. 4.  Screenshot of the modeling tool 
 

 Before the deployment, the model is internally exported 

to XML format. Then, it is converted to Docker Swarm 

commands, executed by Docker Swarm master, which are 

actually responsible for container creation and deployment 

on each of the devices considered. This way, all the devices 

present in deployment model become actually Docker 

Swarm workers, running corresponding services on given 

ports. The transformation is defined by XSL file and 

executed by Saxon [7] engine which is also a stand-alone 

product, but also available within ADOxx environment. In 

Listing 1, the XSL transformation [8] is given as a pseudo-

code: 

 
foreach(Device device in deployment) 

{ 

 if(device.swarmToken!=null &&    

 device.ipAddress!=null) 

 { 

  ssh(device.ipAddress, 

  device.username,device.password); 

   

  joinSwarm(device.swarmToken); 

 } 

 

 ssh(master_ip_address, 

 master_username,master_password); 

  

 addAlias(device.ipAddress,device.name); 

 

 foreach (Task task in device.Tasks) 

 { 

  write(“docker service create -p      

  task.externalPort:task.internalPort –-  

  replicas   number_of_replicas --network  

  overlay_network_name --name task.name 

   –-constraint ‘node.label.alias==      

  device.name’  

   task.containerReposityory/ 

  task.containerName_device.type”);  

 } 

 } 

Listing 1.  Pseudo-code for model to Docker Swarm infrastructure code 

construction 

 

For each device present in the diagram, it is checked if it 

has both IP Address and Swarm token set. If it is true, it 

means that the device needs to be added to the Swarm 

cluster. In that case, we need to SSH to the device and 

execute the Swarm join command with a token as a 

parameter. Otherwise, if the parameters are missing, it 

means that the device has already joined the Docker Swarm 

as a worker and we can directly proceed to the step of 

container scheduling. For this step, it is required to SSH into 

Swarm master (assuming that the Swarm master has been 

already run). Then, we can add the alias of the device and 

allocate all the tasks that should be executed inside the 

device, each of them running on separate internal/external 

port. If the device has already downloaded the Docker 

image for the container, the service can be started 

immediately, otherwise it downloads the corresponding 

image, according to the device type (x86/ARM). 

Furthermore, a simple test functionality is available for 

the services deployed. It is performed by transformation of 

task dependency relationships within the execution flow, 

into a sequence of HTTP requests, as presented in Listing 2. 
 

curl 

MASTER_IP:task.externalPort/task.name+”.php”+

?task.inpus[0].parameter=task.inputs[0].value

&task.inputs[1].parameter=task.inputs[1].valu

e&…&task.inputs[n].parameter=task.inputs[n].v

alue 

 
Listing 2.  Construction of HTTP requests for testing the deployed services 

 

From the infrastructure perspective, all the HTTP requests 

are sent to the Docker Swarm master. After that, the master 

resolves the Swarm worker device where the service is 

actually deployed according to the port used to expose the 

service. Fig 5. illustrates the behavior of the Docker Swarm 

infrastructure when we test the deployed application using 

the previously described mechanism [3]. 
 

 
Fig. 5.  Testing the deployed services using the Docker Swarm 

infrastructure 

IV. EVALUATION 

To check if the tool works correctly, we have 

experimented with several deployment configurations, 

covering various cases: execution in Cloud, execution in 

Edge and execution in mixed environment (Fog), for 



 

varying number of devices and task dependency depth. 

Furthermore, we compared the times obtained for setting up 

the same application with and without tool to figure out how 

much is the speed up of the whole procedure.  

For evaluation purposes, we created infraction test 

application [3], which consists of several tasks, packed as 

Docker containers, each of them running PHP or database 

server and performing some data-related operations: data 

storage/retrieval or computation. Fig. 6 presents the 

structure of the test application. 

Fig. 6.  Test application overview 

 

 Table II shows an overview and description of tasks used 

to construct our case study application. Each of the tasks 

actually corresponds to a separate Docker image. The first 

column presents a name of the task. The second column 

contains the name of the technology used by the task. The 

third column (environment) tells us if the task is executed in 

Cloud or within the Edge of our network during the 

experiment. The last column indicates the computing 

architecture of the device executing the considered task. 

 
TABLE II 

 TASK DESCRIPTION 

Task Name Tech. Env. Architecture 

ECG read data MongoDB Edge ARM 

ECG processing PHP Edge ARM 

ECG write data MongoDB Cloud X86 

Troponin read data MongoDB Edge ARM 

Troponin processing PHP Edge X86 

Troponin write data MongoDB Cloud X86 

ECG read result MongoDB Edge ARM 

Troponin read result MongoDB Edge ARM 

Infraction check PHP Cloud X86 

Result storage MySQL Cloud X86 

 

 Table III shows a summary of results obtained during the 

experiments. In all cases, we developed the deployment 

model, relying on the consistency and validation check 

controls embedded in tool, and then we generated the code 

which has been executed by Docker Swarm master, 

responsible for allocating tasks to corresponding devices. 

The infrastructure used for testing consists of following 

devices: three Raspberry Pi model 3, two laptops and two 

virtual machines in cloud. One of the laptops had role of 

Docker Swarm master, while the other devices were used as 

Swarm workers executing the allocated tasks. 

 The first column in Table III includes the names we have 

assigned to the considered application. Each of the 

applications is constructed from tasks described in Table II. 

The Max depth column represents the length of the longest 

path in model’s dependency graph. For example, level 1 

represents an application with services that are all stand-

alone and where none of the services depends on any other 

service. Level 2 represents a two-tier application, where a 

service (for example, a database) needs to be deployed 

before another one (the main application) can be deployed 

and configured. Thus, in general, Max depth in conjunction 

with the used technologies gives an idea of the complexity 

of the system under deployment. To quantify the time 

needed to generate and deploy applications, we repeated the 

experiments 10 times and computed the average duration for 

generating the shell script commands (third column), and 

deploying it (forth and fifth columns). Gen. time presents the 

time needed to automatically generate Docker Swarm 

commands from user-drawn deployment diagram. Cold 

Deploy Time stands for the time which takes to deploy the 

application taking into account also the time needed to 

download corresponding images from Docker Hub (in our 

laboratory the download speed was 100Mbps), while Warm 

Deploy Time is deployment time in case when all the 

devices had already obtained the necessary images and just 

need to run them. Design Time is time needed to draw a 

deployment diagram using the tool. 

 In what follows, the results obtained during experiments 

are presented (Table III). 

 
TABLE III 

 EVALUATION RESULTS 

Blueprint Max 

Depth 

Gen. 

Time 

[s] 

Cold 

Deploy  

Time 

[s] 

Warm 

Deploy 

Time 

[s] 

Design 

Time 

[s] 

ECG 

 test 

3 2.58 75 8.56 32 

Troponin 

test 

3 2.72 84 8.90 35 

Infraction 

test 

5 4.11 198 11.42 57 

 

 From the Table III, we can see that the shell script code 

generation time strictly depends on the number of devices 

and tasks (the size of a model), while the warm deploy is 

much quicker than cold deploy, as expected, due to 

exclusion of time spent to download the necessary data. 

 After that, we compared the time spent to completely set 

up the application using the tool and without it, for the case 

of infraction test application. It took more than 10 minutes 

to set it up manually, without any tool intervention in case 

of cold deploy and around 7 minutes in case of warm 

deploy. Note that this estimate assumes that user is familiar 

with Docker Swarm infrastructure.  

V. DISCUSSION 

 The author has already presented in [9] a tool for 

automatic deployment of data-intensive applications using a 

similar metamodeling approach, based on [11]. However, 

the previous work is focused on Cloud applications, based 

on traditional virtualization methods and using TOSCA 

YAML [12] deployment configuration. This paper presents 

a solution which extends support to Fog execution 

environments, with IoT devices support, based on Docker 

containers, inspired by approach presented in [1][2][3], 

utilizing Docker Swarm as the underlying infrastructure. 

 Considering the results obtained, we can conclude that 

this tool does not only extend the support to IoT use cases in 

Fog environment, but also provides support for computation 



 

task movement and speeds up the application configuration, 

setup and deployment process. In case of cold deploy, we 

accelerate the procedure 2.5 times, while it is around 7 times 

for warm deploy. This is due to fact that, in case of warm 

deploy, when the download time is eliminated, we actually 

compare the code generation and design time against the 

time needed for manual setup operations. However, the 

relative speed-up obtained in previous work [9][11] was 

greater. This can be explained by the fact that the manual 

virtual machine setup and configuration generally takes 

more effort compared to container-based approach, while 

the code transformation component of the tool more or less 

has the same performance in both cases. When it comes to 

absolute deployment duration, it is much quicker in 

container-based approach, as there is no need to spawn a full 

operating system (using hypervisor) each time we deploy a 

task, which is an advantage in favor of container-based  

systems, especially when we take into account that low-

power Raspberry Pi devices are involved. 

VI. CONCLUSION AND FUTURE WORK 

The result of our work is a tool which enables flexibility 

of applications executed in Fog environments by providing 

the capability of computation task movement, abstracted as 

Docker containers between devices with different 

computing architecture (ARM/x86) and location 

(Cloud/Edge). Metamodeling is used to define rules and 

constraints which not only ensure the correct deployment 

configuration according to the given rules, but also speeds 

up the configuration and deployment procedure, from 2.5 up 

to 7 times. 

However, the capabilities for increasing scalability and 

fault-tolerant features of applications executed in Fog 

environments, offered by Docker Swarm infrastructure, 

which could future improve the flexibility are not exploited 

in this paper, and, therefore, considered as topic for future 

work. Furthermore, increasing the flexibility by enabling the 

data movement capabilities and support for other container 

cluster infrastructures, such as Kubernetes [10]. 

Furthermore, inspired by [13], the idea is to extend and 

customize the approach presented in this paper in order to 

apply it for model-driven, semantic-enabled EDL[14] 

testbed code generator for IoT experimentation 

environments, in order to support RAWFIE [15] Horizon 

2020 project. 
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