



Abstract— Fog Computing extends the Cloud Computing to

the Edge of the network, closer to the things that produce and

act on data including different types of devices, ranging from

personal computers, laptops, workstations to IoT devices,

wearable gadgets and sensors. The heterogeneity and variety of

devices doesn’t make just the activities of application design

harder, but serious effort is also required when it comes to

configuration, deployment, re-deployment and testing of the

applications executed in Fog environments and it is often time-

consuming, trial and error process. As the data could be

produced and consumed at both Edge and Cloud, it means that

application also needs to be compliant with given data privacy

and security policies due to legal constraints, laws and

regulations which restrict the freedom of data movement.

Therefore, it should also be possible to move computation tasks

between devices regardless of their location (Cloud or Edge),

even in the case of different computing architectures, which

means that the applications should be as flexible as possible. In

this paper we focus on automating the deployment activities

and increasing the flexibility of applications executed in Fog

environment by providing a visual tool utilizing the concepts of

metamodeling, automated code generation and container-based

virtualization.

Index Terms — Fog Computing, Container-based

virtualization, Metamodeling, Internet of Things

I. INTRODUCTION

Fog Computing, also referred to as Edge Computing, is

an emerging paradigm aiming to extend Cloud computing

capabilities to fully exploit the potential of the Edge of the

network where traditional devices, as well as new

generations of devices – such as smart, wearable gadgets

and mobile devices (the so-called “IoT devices”) are

considered. It involves the research and application of

enabling technologies that allow computation at the network

Edge so that computing happens near data sources [1].

However, despite the rapid evolution of the data-

processing speed, the bandwidth of the network that carries

data to and from the Cloud has not increased appreciably.

Thus, with Edge devices generating more data, the network

is becoming Cloud computing’s bottleneck. In these cases,

the processing time of time-critical applications is often

limited by the network delay [1][2]. Also, when we have a

large number of devices sensing the information, uploading

the data generated by them would induce additional network

congestion, increasing this way the network delay, even

further. In order to tackle network delay issues, we move the

data processing closer to the data generators and consumers.

The concept of enabling a computer to sense information

Nenad Petrović is with the Faculty of Electronic Engineering, University

of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:

nenad.petrović@ elfak.ni.ac.rs).

without any human intervention has been applied to many

other fields, such as healthcare, home technology,

environmental engineering and transportation [1][2]. Due to

such variety, the second major issue appears. Keeping the

privacy and dealing with security of the information in more

sensitive domains is crucial, in most cases regulated by law,

and dramatically restricts freedom of data movement. Due to

laws and regulations, in some cases the data is not allowed

to leave the boundaries of the institution storing the data.

Thus, in these cases, the data has to be processed within the

Edge, instead of being uploaded over vulnerable network to

the Cloud.

There are two approaches to tackle this problem – move

the data or move the computation tasks [2]. In this case, we

focus on the latter – the computation task movement.

The goal of the research is to explore state-of-the-art

technologies and concepts in order to construct an execution

environment which would give us ability to easily deploy

and move computation tasks between devices with different

computing architectures, located either in Cloud or Edge

satisfying the given limitations and policies. As the result of

the research, a visual tool for automated test and deployment

of data processing applications in Fog environments is

developed, utilizing the concepts of container-based

virtualization as computation task abstraction and

metamodeling approach for representation and abstraction

of the application architecture in order to impose rules and

constraints when it comes to computation task deployment

and movement. User draws a deployment diagram of the

application using the tool, which is later validated, translated

to infrastructure management code and, finally, deployed to

corresponding resources.

In comparison with approach already presented in [9][11]

where the focus is on Cloud applications and hypervisor-

based virtualization, this work extends the idea by

introducing the support for Fog Computing and mixed

architecture environment relying on container-based

virtualization which is more suitable for the scenario when

the tasks also have to be executed on low-power IoT

devices.

II. BACKGROUND

In what follows, the underlying concepts and theoretical

foundations of the developed tool are presented.

- Container-based virtualization: Containers could be

described as a lightweight virtualization approach that

creates virtual environment at a software level inside the

host machine, also known as operating system-level

virtualization. It removes the overhead of using hypervisors

by creating virtual machines in the form of containers (act as

guest systems) thereby sharing the resources of the

underlying host operating system. It provides different

Model-driven Approach for Deployment of

Container-based Applications in Fog Computing

Nenad Petrović, Faculty of Electronic Engineering, University of Niš

levels of abstraction in which a kernel is shared between

containers and more than one process can run inside each

container. This way, the whole system can become more

resource-efficient as there is no additional layer of

hypervisor, and thus no full operating system which can

occupy a lot of storage space for each virtual machine.

Therefore, container-based virtualization is much more IoT-

devices friendly. Considering the fact that most IoT devices

use low-power ARM CPUs, it was important to explore if

there are compatible ports of container-based platforms.

Fortunately, there is Docker ARM port compatible with

Raspberry Pi, which is widely used container-based

virtualization technology. Thus, we decided to use Docker

containers as computation task abstraction in our execution

environment, as they are lightweight, easily portable and

also support popular ARM-based Linux devices, as

Raspberry Pi which gives capability to move tasks between

Cloud and Edge by using ARM computation task

counterparts for each task in the system [3].

- Docker Swarm infrastructure: The underlying container

management system is Docker Swarm, a native Docker

technology which is fully supported by ARM Docker port,

out of the box. There are two types of devices inside the

cluster: master node and worker nodes. The Swarm is

created at master node which generates a token which

worker nodes use in order to join the Swarm. Master node is

responsible for container management and service creation,

allocating the right container to the right device which had

joined the Swarm previously. As container repository, we

use public Docker Hub repositories which should contain

two versions of each task – ARM and x86, with same name

but different suffix. This way, we ensure that, in case of

computation task movement, the device can find the right

container (ARM or x86). Fig.1 illustrates the Docker Swarm

infrastructure [3].

Fig. 1. Docker Swarm infrastructure

 - Model-driven engineering: A software development

methodology focused on creation and exploitation of

domain models aiming at abstract representations of the

knowledge, rather than computing concepts. The tool

produced as an outcome of the research allows designers to

use the modeling approach for deployment, re-deployment,

analysis, optimization and architectural configuration of the

applications that are executed in Fog environments. The user

draws a diagram (model), which, translated into code,

manages the deployment of the given infrastructure [4].

- Automated code generation: A mechanism which

generates a computer program based on higher level

abstractions defined by developer [4]. In our case, the

deployment configuration given by a diagram is translated

into code (Docker and shell commands).

- Infrastructure-as-a-code: Approach where the code

(possibly automatically generated from the model) is able to

provide precise instructions to management tools that

support the automated deployment and configuration of

applications on the specified resources [5]. When it comes

to our approach, Docker Swarm commands are used to

manage the task allocation and deployment, while the tasks

become Docker containers running on corresponding

devices.

- Metamodeling: Analysis, construction and development

of rules, constraints, models and theories applicable and

useful for modeling a predefined class of problems. In our

tool, user-drawn models are defined and constrained by a

metamodel, which defines the deployment diagram

elements, their attributes, configuration parameters, relations

and rules they have to comply with [4]. The deployment of

the application contains devices which are able to execute

tasks corresponding to Docker containers. The metamodel

(Fig. 2.) consists of the following elements and relationships

between elements, as given in Table I.

TABLE I

METAMODEL ELEMENTS OVERVIEW

Name Description

Deployment Deployment represents a highest level

abstraction in the metamodel and

contains devices executing allocated

tasks.

Device Represents a physical or virtual device

executing a task given by a container.

Considering that our execution

environment use case is Fog Computing,

we should consider heterogeneous

devices (both IoT ARM-based devices

and conventional x86 PCs) whose

location could either Cloud or Edge. The

location of the device is necessary in

order to allocate the right tasks due to

data privacy and other regulations. Also,

it is important to keep track of memory

available and allocated to tasks for each

of the devices. Each device is actually a

part of Docker Swarm infrastructure

cluster as a worker which is executing a

certain task. Therefore, in order to join a

Docker Swarm cluster, we need to

provide a valid Swarm master token. In

that case, we also need an IP address in

order to SSH (assuming that we have

access to devices) and join them to the

cluster. Otherwise, if devices already

belong to some Swarm cluster, we can

leave these two fields empty. In that

case, we are used name attribute as alias

to identify devices within the running

cluster. In order to SSH, devices could

require credentials in order to log in

(username and password).

Task Computation task abstractions,

represented as Docker containers. In our

case, they are PHP servers packed as

Docker containers which execute data

processing with arbitrary number of

inputs and one output. All the containers

should be present in Docker Hub public

repository, and each of them should have

also its ARM counterpart, so we could

perform the computation task movement

between devices. Each device, depending

on its architecture, executes the

corresponding container version. Also,

each of the containers occupies a certain

amount of memory which should not be

larger than device memory available.

Task Dependency A directed association, describing the

fact that tasks can be connected to each

other, so the output of one task can be

used as the input of another one, which

makes a computation flow.

Execution Flow A sequence of inter-connected tasks,

using Task Dependency relations. This

abstraction is used in order to support the

testing of the deployed services.

Execution

Environment

For tasks, it represents the environment

where each of them could be executed

due to data movement constraints, legal

regulations, security and privacy

policies. According to this, some of the

tasks are allowed to be executed only

within the Edge of the network, without

leaving the physical boundaries of the

organization. On the other side, there are

tasks whose execution location is not

constrained, so they can be executed also

in Cloud Each device physically resides

in Cloud or Edge. Therefore, the

metamodel constraint rules take care of

matching execution environment

matching for each of the tasks.

Fig. 2. Metamodel for deployment, testing and computation task

movement in Fog environments supporting IoT devices

As addition to the given metamodel, constraints and rules

for given elements are also defined using the metamodeling

platform. For example, each task needs to be inside one and

exactly one device. One device can execute many tasks.

However, each task needs to have all its inputs defined

before testing, whether they come from the parameter list

(set by user) or dependencies with other task. Also, the

memory that task occupies should less or equal to memory

available. Each device has its location as an attribute, which

could be: Cloud, Edge or both. According to this, we should

match the execution environment mapping between devices

and tasks. This mechanism encapsulates the fact that some

of the tasks process data whose movement is constrained

due to legal regulations, security or privacy policies,

therefore, it should be processed within the boundaries of

the organization, without being sent to Cloud providers. The

part of allocating the right version to right kind of device

(ARM/x86) done within the code generation phase, and is

defined inside the transformation code, when the

corresponding suffix is appended.

III. IMPLEMENTATION

The tool is utilizing model-to-code transformations and

Docker Swarm cluster management commands in order to

automatically deploy the container-based application

represented by user-created diagram. Fig. 3 presents the

overview of components involved and operations performed

to deploy the application given by a model, using the tool

we have developed.

Fig. 3. Working principle overview

 First, user models a container-based application using a

set of given concepts and relationships between them inside

the modelling environment. The modeling environment is

developed using ADOxx meta-modeling platform [6] which

provides the necessary capabilities to develop a GUI-

enabled modelling tool based on UML-alike metamodel,

described using ADOxx Definition Language (a meta-

modelling language used by ADOxx platform). The main

advantage of ADOxx meta-modeling platform is the support

for creating a complete standalone product based on

metamodel definition, including all the visual elements.

Shapes are defined as value of GraphRep attribute for each

element.

 Once the modelling is done, it is possible to check if the

model is valid. A set of rules based on the execution

environment constraints are implemented within the

metamodel in order to achieve this. For example, if we have

a task that uses sensible data for computation, enforced by

these rules, we can deploy it only to device which resides

within the boundaries of the organization. After that, once

the considered model is valid, the necessary transformations

can be performed and the corresponding application is

deployed. The previously mentioned rules and constraints

are also described using ADOxx Definition Language. Fig.

4. displays the screenshot of the modelling environment.

Fig. 4. Screenshot of the modeling tool

 Before the deployment, the model is internally exported

to XML format. Then, it is converted to Docker Swarm

commands, executed by Docker Swarm master, which are

actually responsible for container creation and deployment

on each of the devices considered. This way, all the devices

present in deployment model become actually Docker

Swarm workers, running corresponding services on given

ports. The transformation is defined by XSL file and

executed by Saxon [7] engine which is also a stand-alone

product, but also available within ADOxx environment. In

Listing 1, the XSL transformation [8] is given as a pseudo-

code:

foreach(Device device in deployment)

{

 if(device.swarmToken!=null &&

 device.ipAddress!=null)

 {

 ssh(device.ipAddress,

 device.username,device.password);

 joinSwarm(device.swarmToken);

 }

 ssh(master_ip_address,

 master_username,master_password);

 addAlias(device.ipAddress,device.name);

 foreach (Task task in device.Tasks)

 {

 write(“docker service create -p

 task.externalPort:task.internalPort –-

 replicas number_of_replicas --network

 overlay_network_name --name task.name

 –-constraint ‘node.label.alias==

 device.name’

 task.containerReposityory/

 task.containerName_device.type”);

 }

 }

Listing 1. Pseudo-code for model to Docker Swarm infrastructure code

construction

For each device present in the diagram, it is checked if it

has both IP Address and Swarm token set. If it is true, it

means that the device needs to be added to the Swarm

cluster. In that case, we need to SSH to the device and

execute the Swarm join command with a token as a

parameter. Otherwise, if the parameters are missing, it

means that the device has already joined the Docker Swarm

as a worker and we can directly proceed to the step of

container scheduling. For this step, it is required to SSH into

Swarm master (assuming that the Swarm master has been

already run). Then, we can add the alias of the device and

allocate all the tasks that should be executed inside the

device, each of them running on separate internal/external

port. If the device has already downloaded the Docker

image for the container, the service can be started

immediately, otherwise it downloads the corresponding

image, according to the device type (x86/ARM).

Furthermore, a simple test functionality is available for

the services deployed. It is performed by transformation of

task dependency relationships within the execution flow,

into a sequence of HTTP requests, as presented in Listing 2.

curl

MASTER_IP:task.externalPort/task.name+”.php”+

?task.inpus[0].parameter=task.inputs[0].value

&task.inputs[1].parameter=task.inputs[1].valu

e&…&task.inputs[n].parameter=task.inputs[n].v

alue

Listing 2. Construction of HTTP requests for testing the deployed services

From the infrastructure perspective, all the HTTP requests

are sent to the Docker Swarm master. After that, the master

resolves the Swarm worker device where the service is

actually deployed according to the port used to expose the

service. Fig 5. illustrates the behavior of the Docker Swarm

infrastructure when we test the deployed application using

the previously described mechanism [3].

Fig. 5. Testing the deployed services using the Docker Swarm

infrastructure

IV. EVALUATION

To check if the tool works correctly, we have

experimented with several deployment configurations,

covering various cases: execution in Cloud, execution in

Edge and execution in mixed environment (Fog), for

varying number of devices and task dependency depth.

Furthermore, we compared the times obtained for setting up

the same application with and without tool to figure out how

much is the speed up of the whole procedure.

For evaluation purposes, we created infraction test

application [3], which consists of several tasks, packed as

Docker containers, each of them running PHP or database

server and performing some data-related operations: data

storage/retrieval or computation. Fig. 6 presents the

structure of the test application.

Fig. 6. Test application overview

 Table II shows an overview and description of tasks used

to construct our case study application. Each of the tasks

actually corresponds to a separate Docker image. The first

column presents a name of the task. The second column

contains the name of the technology used by the task. The

third column (environment) tells us if the task is executed in

Cloud or within the Edge of our network during the

experiment. The last column indicates the computing

architecture of the device executing the considered task.

TABLE II

 TASK DESCRIPTION

Task Name Tech. Env. Architecture

ECG read data MongoDB Edge ARM

ECG processing PHP Edge ARM

ECG write data MongoDB Cloud X86

Troponin read data MongoDB Edge ARM

Troponin processing PHP Edge X86

Troponin write data MongoDB Cloud X86

ECG read result MongoDB Edge ARM

Troponin read result MongoDB Edge ARM

Infraction check PHP Cloud X86

Result storage MySQL Cloud X86

 Table III shows a summary of results obtained during the

experiments. In all cases, we developed the deployment

model, relying on the consistency and validation check

controls embedded in tool, and then we generated the code

which has been executed by Docker Swarm master,

responsible for allocating tasks to corresponding devices.

The infrastructure used for testing consists of following

devices: three Raspberry Pi model 3, two laptops and two

virtual machines in cloud. One of the laptops had role of

Docker Swarm master, while the other devices were used as

Swarm workers executing the allocated tasks.

 The first column in Table III includes the names we have

assigned to the considered application. Each of the

applications is constructed from tasks described in Table II.

The Max depth column represents the length of the longest

path in model’s dependency graph. For example, level 1

represents an application with services that are all stand-

alone and where none of the services depends on any other

service. Level 2 represents a two-tier application, where a

service (for example, a database) needs to be deployed

before another one (the main application) can be deployed

and configured. Thus, in general, Max depth in conjunction

with the used technologies gives an idea of the complexity

of the system under deployment. To quantify the time

needed to generate and deploy applications, we repeated the

experiments 10 times and computed the average duration for

generating the shell script commands (third column), and

deploying it (forth and fifth columns). Gen. time presents the

time needed to automatically generate Docker Swarm

commands from user-drawn deployment diagram. Cold

Deploy Time stands for the time which takes to deploy the

application taking into account also the time needed to

download corresponding images from Docker Hub (in our

laboratory the download speed was 100Mbps), while Warm

Deploy Time is deployment time in case when all the

devices had already obtained the necessary images and just

need to run them. Design Time is time needed to draw a

deployment diagram using the tool.

 In what follows, the results obtained during experiments

are presented (Table III).

TABLE III

 EVALUATION RESULTS

Blueprint Max

Depth

Gen.

Time

[s]

Cold

Deploy

Time

[s]

Warm

Deploy

Time

[s]

Design

Time

[s]

ECG

 test

3 2.58 75 8.56 32

Troponin

test

3 2.72 84 8.90 35

Infraction

test

5 4.11 198 11.42 57

 From the Table III, we can see that the shell script code

generation time strictly depends on the number of devices

and tasks (the size of a model), while the warm deploy is

much quicker than cold deploy, as expected, due to

exclusion of time spent to download the necessary data.

 After that, we compared the time spent to completely set

up the application using the tool and without it, for the case

of infraction test application. It took more than 10 minutes

to set it up manually, without any tool intervention in case

of cold deploy and around 7 minutes in case of warm

deploy. Note that this estimate assumes that user is familiar

with Docker Swarm infrastructure.

V. DISCUSSION

 The author has already presented in [9] a tool for

automatic deployment of data-intensive applications using a

similar metamodeling approach, based on [11]. However,

the previous work is focused on Cloud applications, based

on traditional virtualization methods and using TOSCA

YAML [12] deployment configuration. This paper presents

a solution which extends support to Fog execution

environments, with IoT devices support, based on Docker

containers, inspired by approach presented in [1][2][3],

utilizing Docker Swarm as the underlying infrastructure.

 Considering the results obtained, we can conclude that

this tool does not only extend the support to IoT use cases in

Fog environment, but also provides support for computation

task movement and speeds up the application configuration,

setup and deployment process. In case of cold deploy, we

accelerate the procedure 2.5 times, while it is around 7 times

for warm deploy. This is due to fact that, in case of warm

deploy, when the download time is eliminated, we actually

compare the code generation and design time against the

time needed for manual setup operations. However, the

relative speed-up obtained in previous work [9][11] was

greater. This can be explained by the fact that the manual

virtual machine setup and configuration generally takes

more effort compared to container-based approach, while

the code transformation component of the tool more or less

has the same performance in both cases. When it comes to

absolute deployment duration, it is much quicker in

container-based approach, as there is no need to spawn a full

operating system (using hypervisor) each time we deploy a

task, which is an advantage in favor of container-based

systems, especially when we take into account that low-

power Raspberry Pi devices are involved.

VI. CONCLUSION AND FUTURE WORK

The result of our work is a tool which enables flexibility

of applications executed in Fog environments by providing

the capability of computation task movement, abstracted as

Docker containers between devices with different

computing architecture (ARM/x86) and location

(Cloud/Edge). Metamodeling is used to define rules and

constraints which not only ensure the correct deployment

configuration according to the given rules, but also speeds

up the configuration and deployment procedure, from 2.5 up

to 7 times.

However, the capabilities for increasing scalability and

fault-tolerant features of applications executed in Fog

environments, offered by Docker Swarm infrastructure,

which could future improve the flexibility are not exploited

in this paper, and, therefore, considered as topic for future

work. Furthermore, increasing the flexibility by enabling the

data movement capabilities and support for other container

cluster infrastructures, such as Kubernetes [10].

Furthermore, inspired by [13], the idea is to extend and

customize the approach presented in this paper in order to

apply it for model-driven, semantic-enabled EDL[14]

testbed code generator for IoT experimentation

environments, in order to support RAWFIE [15] Horizon

2020 project.

ACKNOWLEDGMENT

This work has received funding from the European

Union’s Horizon 2020 Framework Programme for Research

and Innovation under the Grant Agreement No 645220,

project RAWFIE (Road-, Air- and Water- based Future

Internet Experimentation).

REFERENCES

[1] Pierluigi Plebani, David Garcia-Perez, David Bermbach, Frank Pallas,

Stefan Tai, “Moving Data in the Fog: Information Logistics with the

DITAS Cloud Platform”, 2017, pp. 1-7.

[2] Pierluigi Plebani, David Garcia-Perez, Maya Anderson, David

Bermbach, Cinzia Cappiello, Ronen I. Kat, Frank Pallas, Barbara
Pernici, Stefan Tai, Monica Vitali, “Information Logistics and Fog

Computing: The DITAS Approach”, 2017, pp. 130-136.

[3] N. Petrovic, “Enabling Flexibility of Data-Intensive Applications on

Container-Based Systems with Node-RED in Fog Environments”,

Milan, Country: Italy. of Politecnico di Milano, 2017, ch. 3, pp. 18–
62.

[4] M. Brambilla, J. Cabot, Manuel Wimmer, “Model-Driven Software

Engineering in Practice”, 2012, pp. 13-16.
[5] E. Di Nitto, E. Di Nitto, D. Tamburi, M. Guerierro, M. Artac, T.

Borovsak, “DevOps: introducing infrastructure-as-code”, in Proc.

39th International Conference on Software Engineering Companion
ICSE-C’17, Argentina, 2017, pp. 497-498.

[6] ADOxx Metamodelling Platform, [On Line]. Available on:

https://www.adoxx.org/live/meta-modelling-platforms-hierarchy
[7] Saxon XSLT, [On Line]. Available on: http://saxon.sourceforge.net/

[8] XSLT intro, [On Line]. Available on:

https://www.w3schools.com/xml/xsl_intro.asp
[9] N.Petrovic, “Tool for Modelling and Automatic Deployment of Data-

Intensive Applications”, IEESTEC 10th Student projects conference,
Niš, Serbia, 2017, pp. 25-30.

[10] Kubernetes, [On Line]. Available on: https://kubernetes.io

[11] E. Di Nitto, D. Tamburi, M. Guerierro, M. Artac, T. Borovsak,

„Developing Data-Intensive Cloud Applications with Iterative Quality

Enhancements – 2.4 Deployment Abstractions“, [On Line]. Available

on: http://wp.doc.ic.ac.uk/dice-h2020/wp-
content/uploads/sites/75/2017/07/D2.4_Deployment-abstractions-

Final-version.pdf

[12] Apache ARIA TOSCA Orchestration Engine, [On Line]. Available
on: http://ariatosca.incubator.apache.org/

[13] Nejkovic, V., Tosic, M., Jelenkovic, F., Ontologies framework for

semantic driven code generation over testbed premises, 7th
International Conference on Information Society and Technology,

Kopaonik, Serbia, March, 12th-15th 2017.

[14] K. Kolomvatsos, M. Tsiroukis and S. Hadjiefthymiades, “An
Experiment Description Language for Supporting Mobile IoT

Applications”, pp. 461-486, [On Line] Available on:

https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788793519
114C15.pdf

[15] RAWFIE: Road-, Air- and Water- based Future Internet

Experimentation, [On Line]. Available on http://www.rawfie.eu/

https://www.adoxx.org/live/meta-modelling-platforms-hierarchy
http://saxon.sourceforge.net/
https://www.w3schools.com/xml/xsl_intro.asp
https://kubernetes.io/
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/07/D2.4_Deployment-abstractions-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/07/D2.4_Deployment-abstractions-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/07/D2.4_Deployment-abstractions-Final-version.pdf
http://ariatosca.incubator.apache.org/

