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Abstract—We present results for several different methods of 

calculating the singular integral of the Hankel function, that 

arises when analyzing scattering from an infinitely long 

conducting strip using method of moments. Particularly we focus 

on calculation of the diagonal elements in method of moments 

matrix. We use several different approaches for numerical 

calculation of the integral: trapezoidal rule, potential integrals 

evaluation method, double-exponential (DE) method, and finally, 

Gauss-Legendre (GL) method, with an adequate variable 

substitution.    

 

Index Terms—convergence; double exponential; Gauss-

Legendre; Hankel; integral; method of moments; numerical 

integration; scattering; singularity; strip.  

 

I. INTRODUCTION 

Scattering from infinitely long structures is a well known 

theoretical problem in computational electromagnetics [1]. 

Here, we consider a perfectly conducting, infinitely long, 

infinitely thin strip of a finite width L, placed in a vacuum. It 

is being illuminated by an incident TM-polarized plane wave, 𝐸୧ = e୨௞ሺ௫ c୭s 𝜙౟+௬ s୧୬ 𝜙౟ሻ, as it is shown in Fig. 1, where ݇ = ଶπ𝜆  

is a wave number. The field that is being radiated by induced 

surface current of a density 𝑱, is a scattered field, and it is 

expressed with a following equation [2], 

 𝐸s = − ௞𝑍cସ ∫ ݔ|଴ሺଶሻሺ݇ܪሻ′ݔzሺܬ − ௅଴′ݔሻd|′ݔ ,                             (1)  

 

where ܼc ≈ ͳʹͲπ Ω is the characteristic impedance of a 

vacuum, and ܪ଴ሺଶሻሺݔሻ is the Hankel function of the second 

kind, zeroth order. On the surface of the strip, the boundary 

condition for the electric field is, 𝒏 × ሺ𝑬୧ + 𝑬sሻ = Ͳ, that is 𝐸୧ + 𝐸s = Ͳ, from which it follows, 

 𝐸୧ = ௞𝑍cସ ∫ ݔ|଴ሺଶሻሺ݇ܪሻ′ݔzሺܬ − ௅଴′ݔሻd|′ݔ .                                 (2) 

 

This is the integral equation with the unknown current 

distribution ܬz, that is to be solved numerically. 
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Fig. 1.  Coordinate system is bound, to an infinitely long conducting strip of a 

finite width L. 

  

II. METHOD  

In order to solve the integral equation (2), we subdivide the 

strip, along the ݔ-axis, into 𝑁 segments of equal width ∆ݔ∆ ,ݔ = ௅ே . The incident field is 𝐸୧ = e୨௞௫ c୭s 𝜙౟
. We 

approximate the unknown density ܬzሺݔ′ሻ, with the finite sum ∑ ܽ௡ ௡݂ே௡=ଵ , where ܽ௡ are the unknown coefficients, which 

have to be determined, and ௡݂ are the pulse basis functions, 

defined in a following way [3], 

 

௡݂ = { Ͳ, for ݔ′ < ሺ݊ − ͳሻ∆ݔͳ, for ሺ݊ − ͳሻ∆ݔ ≤ ′ݔ ≤ ,Ͳݔ∆݊ for ݔ′ > ݔ∆݊ .                                   (3) 

  

The applied approximation is known as a staircase (piecewise-

constant) approximation. For the test function we use Dirac 

delta function, positioned at the midpoint of the m-th segment, ݓ௠ = 𝛿ሺݔ௠ሻ, where ݔ௠ is the point at the middle of the m-th 

segment, ݔ௠ = ሺ݉ − Ͳ.ͷሻ∆ݔ, ݉ = ͳ, ʹ, … , 𝑁. In (2), the 

unknown density is substituted with the mentioned finite sum, 

for Ͳ ≤ ݔ ≤ 𝐿 we have, e୨௞௫ c୭s 𝜙౟ = ௞𝑍cସ ∑ ܽ௡ ∫ ݔ|଴ሺଶሻሺ݇ܪ − ௡∆௫ሺ௡−ଵሻ∆௫ே௡=ଵ′ݔሻd|′ݔ .         (4) 

 

If the inner product of the test function and the left side of the 

equation (4) is equalized, with the inner product of the test 

function and the right side of the equation (4), then the system 

of linear equations is obtained, for ݉ = ͳ, ʹ, … , 𝑁, e୨௞௫೘ c୭s 𝜙౟ = ௞𝑍cସ ∑ ܽ௡ ∫ ௠ݔ|଴ሺଶሻሺ݇ܪ − ௡∆௫ሺ௡−ଵሻ∆௫ே௡=ଵ′ݔሻd|′ݔ .   (5) 
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The solution of the system (5), is a vector ሺܽ௡ሻே×ଵ, expressed 

in a following way, 

ሺܽ௡ሻே×ଵ = ଵଵݖ) ڮ ڭଵ௡ݖ ⋱ ௡ଵݖڭ ڮ ௡௡)−ଵݖ (eౠೖ𝑥భ c౥s 𝜙౟ڭeౠೖ𝑥𝑁 c౥s 𝜙౟).                      (6) 

Element ݖ௠௡ of the matrix, (ݖଵଵ ڮ ڭଵ௡ݖ ⋱ ௡ଵݖڭ ڮ  ,௡௡), for m≠n isݖ

௠௡ݖ = ௞𝑍cସ ∫ ௠ݔ|଴ሺଶሻሺ݇ܪ − ௡∆௫ሺ௡−ଵሻ∆௫′ݔሻd|′ݔ .                             (7) 

The value of the diagonal element ݖ௡௡ is, ݖ௡௡ = ௞𝑍cସ ∫ ݔ∆଴ሺଶሻሺ݇|Ͳ.ͷܪ − ௫଴∆′ݔሻd|′ݔ .                                (8) 

The Hankel function, ܪ଴ሺଶሻሺ݇|ݔ|ሻ, has a singularity at zero, as 

it is shown in Fig. 2. This means that the integrand in (8), has 

a singularity at Ͳ.ͷ∆ݔ. We use the small argument 

approximation of the Hankel function [2], ܪ଴ሺଶሻሺ݇|ݔ|ሻ ≈ ͳ − ୨ଶπ ln γ௞|௫|ଶ , ݔ → Ͳ,                                     (9)     

where γ ≈ ͳ.͹ͺͳ is Euler’s constant. If in (8), we apply the 

small argument approximation (9), then we have a new 

expression for the value of the diagonal element [2], ݖ௡௡ ≈ ௞𝑍cସ ∫ [ͳ − ୨ଶπ lnሺγ௞|଴.ହ∆௫−௫′|ଶ ሻ]∆௫଴ d(10)                         .′ݔ 

Because integrands in (8) and (10), have a singularity at Ͳ.ͷ∆ݔ, integrals in (8) and (10) are hard to calculate 

numerically. In [1], there is a well-known approximation of 

the value of the diagonal element (10), ݖ௡௡ = ௞𝑍c∆௫ସ [ͳ − ୨ଶπ lnሺγ௞∆௫ସe ሻ],                                             (11) 

where e is the base of the natural logarithm. One of the 

alternative methods, for the determination of the value of the 

diagonal element, is trapezoidal rule, where the interval from 

0 to ∆ݔ, is subdivided into 𝑁a equal subintervals, ∆ݔa = ∆௫ேa, so 

we have, ݖ௡௡ ≈ ௞𝑍c∆௫aସ ∑ ݔ∆଴ሺଶሻሺ݇|Ͳ.ͷܪ − ሺ𝑖 − Ͳ.ͷሻ∆ݔa|ሻேa𝑖=ଵ .          (12) 

This method, for 𝑁a = ͳͲ଼, 𝑁 = ͵ͲͲ, ݂ = ͵ͲͲ MHz and 𝐿 = ͵𝜆, gives the value of the diagonal element, ݖ௡௡ = ͷ.ͻʹͳʹ͹ͷ͸ͳ͵ʹʹͻ͵ͷ + jͳ͹.ʹͷͲͻͻ͵ͲͲͻͷ͹ͺͳ Ω,   (13) 

while equation (11), for the same values of 𝑁, ݂ and 𝐿, gives 

the value of the diagonal element, ݖ௡௡ = ͷ.ͻʹͳ͹͸ʹ͸ͶͲ͸ͷ͵͸ͳ + jͳ͹.ʹͷʹʹ͹͹͸ͻͺʹͷͻ͵ Ω.   (14) 

Before the application of numerical methods on solving the 

integral in (8), let us map the interval of integration in (8), into 

interval [−ͳ, ͳ], [Ͳ, [ݔ∆ → [−ͳ, ͳ]. We begin with the general 

interval of integration [݈ଵ, ݈ଶ], and let us map it onto interval [−ͳ, ͳ], using the system of linear equations, {−ͳ = ଵ݈ܣ + ͳ    ܤ = ଶ݈ܣ +  (15)                                                                   .ܤ

 

 

Fig. 2.  Diagram of the Hankel function of the second kind and zeroth order. 

 

By solving the system (15) we get, ܣ = ଶ௟మ−௟భ and ܤ = − ௟మ+௟భ௟మ−௟భ. 

For the interval of integration in (8), and also for already 

mentioned values for 𝑁, ݂ and 𝐿 (for which we have obtained 

the results), we have, ܣ = ʹͲͲ and ܤ = −ͳ. If in (8), variable ݔ′ is substituted by variable ݕ, using the equation, ݔ′ = ௬+ଵଶ଴଴, 

and the symmetry of the function ܪ଴ሺଶሻሺ ௞ଶ଴଴  ,ሻ, then we have|ݕ|

௡௡ݖ  = ௞𝑍cସ଴଴ ∫ ଴ሺଶሻሺܪ ௞ଶ଴଴ ଵ଴ݕሻdݕ .                                                (16) 

 

   Let us first consider the numerical method efficient in 

solving the integrals that have singularity at one or both 

endpoints of the integration interval, which is known as 

double exponential (DE) method [4]. Integral in (16) can be 

solved by applying the DE method. Variable ݕ is substituted 

by variable 𝑡, using the equation [4], 

ݕ  = 𝜙ሺ𝑡ሻ = ଵଶ [tanhሺπଶ sinh𝑡ሻ + ͳ],                                     (17) 

 

that transforms the expression (16) into a following form, 

௡௡ݖ  = ௞𝑍cସ଴଴ ∫ ଴ሺଶሻሺܪ ௞ଶ଴଴ 𝜙ሺ𝑡ሻሻ π4 c୭s୦ 𝑡ሺc୭s୦ሺπమ s୧୬୦ 𝑡ሻሻమ d𝑡+∞−∞ .                 (18) 

 

If we apply the trapezoidal rule on integral in (18), we get,  

௡௡ݖ  ≈ ௞𝑍cℎସ଴଴ ∑ ଴ሺଶሻሺܪ ௞ଶ଴଴ 𝜙ሺ𝑖ℎሻሻ π4c୭s୦𝑖ℎሺc୭s୦ሺπమs୧୬୦𝑖ℎሻሻమே𝑖=−ே ,              (19) 

 

where ℎ is the mesh size, ℎ = ʹ−ெ, and 𝑁 = ͸ ∙ ʹெ. Integral 

in (18), can be replaced with the finite sum of ʹ𝑁 + ͳ 

elements, in (19), due to rapidly decreasing weight coefficient, 

 𝜙′ሺ𝑡ሻ = π4 c୭s୦ 𝑡ሺc୭s୦ሺπమ s୧୬୦ 𝑡ሻሻమ ≈ O ቀe−πమe|𝑡|ቁ , |𝑡| → ∞.                 (20) 

 

The name of the method, double exponential, originates from 

the characteristic of the weight coefficient (20). Criterion, that 

is used to determine whether an array, {ݖ௡௡}, has converged or 



 

not, is the following. We observe the absolute value of the 

difference between successive elements of an array, 

௡௡ሺ𝑁ሻݖ∆  = ௡௡ሺ𝑁ݖ| + ͳሻ −  ௡௡ሺ𝑁ሻ|.                                  (21)ݖ

 

If ∆ݖ௡௡ሺ𝑁ሻ, after monotonous decreasing, has entered into 

rapid changes, as shown in Fig. 3, then it is assumed that an 

array {ݖ௡௡} has  converged. 

 

Fig. 3.  Absolute value of the difference between successive elements of the 

DE array {ݖ௡௡}. 
 

The DE array {ݖ௡௡} converges to the value, 

௡௡ݖ  = ͷ.ͻʹͳʹ͹ͷ͸ͳ͵ʹʹͶͳͶ + jͳ͹.ʹͷͲͻͻ͵Ͳ͵ͷ͹ͳͲͷ Ω.   (22) 

 

   As the next approach for solving the integral (8), we apply 

the Gauss-Legendre method (GL). Corresponding array {ݖ௡௡} 

will not converge, as it is shown in Fig. 4. 

 

Fig. 4.  Absolute value of the difference between successive elements of the 

GL array {ݖ௡௡}. 
 

In the case of array {ݖ௡௡}, obtained by the GL method, there is 

no convergence, because it is not possible to approach the 

singularity near enough, which is different from the DE 

method, where such a thing is possible.  

   Let us replace in (16), variable ݕ with variable 𝑡, in the 

following way, 

 𝑡 = l୬ሺଵ+𝑝௬ሻl୬ሺଵ+𝑝ሻ , where p is a parameter.                                  (23) 

 

Substitution (23) transforms (16) into the equation, 

௡௡ݖ  = ܼ݇c l୬ሺଵ+𝑝ሻସ଴଴𝑝 ∫ ଴ሺଶሻܪ {௞[e𝑡 l౤ሺభ+𝑝ሻ−ଵ]ଶ଴଴𝑝 } e𝑡 l୬ሺଵ+𝑝ሻd𝑡ଵ଴ .        (24) 

 

Let us denote the integrand in (24), with ݂ሺ𝑡ሻ. For the 

function ݂ሺ𝑡ሻ, when 𝑡 → Ͳ+, we have, 

 ݂ሺ𝑡ሻ ≈ [ͳ − ୨ଶπ ln γ௞𝑡 l୬ሺଵ+𝑝ሻସ଴଴𝑝 ] [ͳ + 𝑡 lnሺͳ + 𝑝ሻ].                 (25)          

 

From (25) we see, that the factor 𝑡 l୬ሺଵ+𝑝ሻସ଴଴𝑝 , controlled by the 

value of the parameter 𝑝, enables us to approach the 

singularity, as close as we want. Large values of the ݂ሺ𝑡ሻ, in 

the proximity of the singularity, are attenuated by the factor l୬ሺଵ+𝑝ሻସ଴଴𝑝 , that stands in front of the integral in (24). If we apply 

the GL method for solving the integral (24), the corresponding 

array {ݖ௡௡} converges to the value in (22), for 𝑝 = ͳͲଵଶ.ଵ. Let 

us replace in (16), variable ݕ with variable 𝑡, in the following 

way, 

 𝑡 = [l୬ሺଵ+𝑝௬ሻl୬ሺଵ+𝑝ሻ ]భ೗
,                                                                     (26) 

 

where p and l are parameters, ݈ = ʹ, ͵, Ͷ.   

 

Substitution (26) transforms (16), into the equation, 

௡௡ݖ  = ܼ݇c l୬ሺଵ+𝑝ሻ೗ସ଴଴𝑝  is,                                           (27) ܫ where ,ܫ

ܫ  = ∫ ଴ሺଶሻܪ { ௞ଶ଴଴𝑝 [e𝑡೗ l୬ሺଵ+𝑝ሻ − ͳ]} e𝑡೗ l୬ሺଵ+𝑝ሻ𝑡௟−ଵd𝑡ଵ଴ .          (28) 

 

Let us denote the integrand in (28), with ݃ሺ𝑡ሻ. For the 

function ݃ሺ𝑡ሻ, when 𝑡 → Ͳ+, we have, 

 ݃ሺ𝑡ሻ ≈ [ͳ − ୨ଶπ ln γ௞𝑡೗ l୬ሺଵ+𝑝ሻସ଴଴𝑝 ] [ͳ + 𝑡௟ lnሺͳ + 𝑝ሻ]𝑡௟−ଵ.         (29) 

 

From (29) we see, that the factor 
𝑡೗ l୬ሺଵ+𝑝ሻସ଴଴𝑝 , controlled by the 

values of the parameters 𝑝 and ݈, enables us to approach the 

singularity, as close as we want. Large values of the Hankel 

function, in the proximity of the singularity, are attenuated by 

the factor 
l୬ሺଵ+𝑝ሻ೗ସ଴଴𝑝 𝑡௟−ଵ. If we apply the GL method for solving 

the integral (28), the corresponding array {ݖ௡௡} converges, for 𝑝 = ͳͲଽ, if ݈ = ʹ, for 𝑝 = ͳͲସ.ଽ, if ݈ = ͵, and for 𝑝 = ͳͲଷ, if ݈ = Ͷ, which is found by numerical experiments.     

III. RESULTS 

Integrand ݂, expression (24), multiplied by the attenuation 

factor 
l୬ሺଵ+𝑝ሻସ଴଴𝑝 , for 𝑝 = ͳͲଵଶ.ଵ, is shown in Fig. 5. Integrand ݃, 

expression (28), multiplied by the attenuation factor 
l୬ሺଵ+𝑝ሻ೗ସ଴଴𝑝 , 

for 𝑝 = ͳͲସ.ଽ and ݈ = ͵, is shown in Fig. 6. Substitutions of 

variable ݕ with variable 𝑡, given in (23) and (26), have 

eliminated the influence of the singularity of the Hankel 

function, which is shown in Figs. 5 and 6. Relative error of 

the element ݖ௡௡, evaluated using (27) and compared to the 

corresponding reference values, for four different pairs of 

values 𝑝 and ݈, is shown in Figs. 7, 8 and 9. On all three 

pictures (Figs. 7, 8 and 9), relative error of the element ݖ௡௡, 

evaluated using (8) and compared to the corresponding 



 

reference values, also appears. Values of the elements ݖ௡௡, 

given in (8) and (27), are calculated by the GL method.  

 

 
                       Fig. 5.  Integrand ݂ multiplied by the attenuation factor. 

 

Family of curves, in the Fig. 7, was obtained for the reference 

value (13), in the Fig. 8, for the reference value (14), and in 

the Fig. 9, for the reference value (22). In the Fig. 10 it can be 

seen that the GL array {ݖ௡௡}, given in (27), has converged for 

the corresponding pairs of values 𝑝 and ݈, while the GL array {ݖ௡௡}, given in (8), has not converged.    

 

 
                 Fig. 6.  Integrand ݃ multiplied by the attenuation factor. 

 

 
     Fig. 7.  Relative error of the element ݖ௡௡, compared to the reference value. 

 

 
      Fig. 8.  Relative error of the element ݖ௡௡, compared to the reference value. 

 

 
      Fig. 9.  Relative error of the element ݖ௡௡, compared to the reference value. 

 

 
Fig. 10.  Absolute value of the difference between successive elements of the 

GL array {ݖ௡௡}. 

       

IV. CONCLUSION 

In this paper we have demonstrated a solution for the 

problem of calculating the values of the diagonal elements, 

when analyzing 2D scatterers using method of moments. The 

cause of the problem is the singularity of the Hankel function. 

It has been shown, that by applying the GL method, with the 

adequate variable substitution (𝑝 = ͳͲଵଶ.ଵ and ݈ = ͳ), the 

same value of the diagonal element is obtained (22), as with 

the DE method. The GL method, with the adequate variable 

substitution (𝑝 = ͳͲଵଶ.ଵ and ݈ = ͳ), converges faster towards 

the value (22), compared to the double exponential method. 

The drawback of the GL method, with the adequate variable 

substitution (𝑝 = ͳͲଵଶ.ଵ and ݈ = ͳ), compared to the DE 

method, lays in its limited application as the proposed 

substitution can not be applied to other functions. 
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