

Abstract — Growing influence of computer networks and

Internet to everyday life, with more and more devices connected

to global network, opens a new possibilities for malicious

activities, while exposing the users to attacks even more,

including their data and privacy. Due to the amount of data that

need to be processed in order to detect such activities, intrusion

detection and prevention systems become a challenging topic.

The goal of this paper is the implementation of Intrusion

Detection System (IDS) on the Apache Hadoop platform. The

Hadoop implementation will enable task parallelization on multi-

core processors. The proposed system will be evaluated and

compared with popular Snort IDS on a two-core i3 processor.

The obtained results show that proposed Hadoop based IDS is

about 25% faster then the Snort IDS.

Index Terms — Network Security, IDS Systems, Hadoop

MapReduce, Myers algorithm.

I. INTRODUCTION

 In the era of Internet of Things (IoT), where the goal, in a

nutshell, is to connect every device and sensor that can be

connected to the global network and build an application

around them, the security of the devices and data that they

produce becomes one of the key requirements [1]. According

to The Statistical Portal “Statista”, the number of connected

devices installed worldwide in 2017 is about 23 billion, and it

is expected that the number will reach 75 billion in 2025 [2].

Unfortunately, software security testing is a commonly

misunderstood and underestimated task [3]. Dynamic market

often put tough timing requirements and deadlines that

influence the development to reuse untested or poorly tested

libraries and components, leaving potential doors open for

attacks. Even the “well tested” libraries are not a guaranty that

the exploit will not be found in the future [4]. In order to

protect the system against threats in such an environment, a

robust security architecture should be built.

Legacy security architectures usually were limited to

firewall as a key component that can permit or deny the traffic

Vladimir Ćirić is with the University of Niš, Faculty of Electronic

Engineering, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:

Vladimir.ciric@ elfak.ni.ac.rs).
Dusan Cvetković is with the University of Niš, Faculty of Electronic

Engineering, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:

cvetkovicdusan@outlook.com).
Ivan Milentijević is with the University of Niš, Faculty of Electronic

Engineering, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:

ivan.milentijevic@ elfak.ni.ac.rs).

to or from specific host or protocol [5]. However, todays

exploits and attacks are far more sophisticated, and require

deep network packet analysis. Examples include various

distributed DoS attacks, zombie networks, etc.

Deep packet analysis can be performed by Intrusion

Detection Systems (IDS) and Intrusion Prevention Systems

(IPS), which are commonly used components in the security

architectures today [6]. An intrusion detection system (IDS) is

a device or software application on network boundary that

transparently monitors network traffic for malicious activity

or policy violations. Any malicious activity detected by IDS is

typically reported to the network administrator and recorded

into log files. The IPS, in addition to IDS, is proactive and

acts to prevent the malicious activity, for example, by

adjusting the firewall rules.

Taking into the account the growing number of devices and

typical bandwidths on the network boundaries, the amount of

data that need to be analyzed for malicious signatures

becomes challenging. Several researchers proposed IDS

implementations with aim to speed up network packet

analysis [7-12]. Different approaches to task and data

parallelism were exploited [9,10]. In [11] authors proposed

GPU accelerated implementation of IDS. Some of the

implementations aim to accelerate the pattern matching

operation through parallelization using Phoenix++ and

MAPCG MapReduce frameworks for multi-core CPUs [12].

The goal of this paper is design and implementation of IDS

system using Apache Hadoop MapReduce framework. The

Apache Hadoop is a framework for development of

distributed applications, which offers both task parallelization

on multi-core processors, and distributed application

execution. The IDS will be implemented using Myers pattern-

search algorithm as a core for signature-based packet analysis.

The design of MapReduce IDS workflow will be described in

details. The proposed system will be evaluated and compared

with popular Snort IDS on a two-core i3 processor. The

obtained results will show that proposed Hadoop based IDS is

about 25% faster then the Snort IDS.

The paper is organized as follows. Section 2 gives a brief

introduction to IDS and Myers algorithm. Section 3 is devoted

to the MapReduce framework, as a basis for the proposed

Apache Hadoop implementation of IDS. Section 4 is the main

section and presents the design of the IDS workflow on the

Hadoop framework. Section 5 is devoted to the system

evaluation, while in Section 6 concluding remarks are given.

Design and Implementation of Network

Intrusion Detection System on the Apache

Hadoop Platform

Vladimir Ciric, Dusan Cvetkovic, Ivan Milentijevic

II. CLASSIFICATION OF IDS AND THE ROLE OF MYERS

ALGORITHM

IDSs are classified, based on their network packet analysis

model, into two categories: pattern (or signature) matching

and anomaly detection [6,12,13]. The signature matching IDS

monitors the network activity for a known misuse pattern that

was previously identified as a malicious attempt [7,8]. The

anomaly-detection IDS makes the decision based on a profile

of a normal network behavior. The network “baseline” is

often constructed using statistical or machine learning

techniques [13,14].

Signature matching IDSs utilize a database with malicious

signatures that are prepared in advance. This leads to fast and

reliable pattern matching operation, commonly used in the

majority of commercial systems [14]. However, anomaly-

detection based IDSs are able to detect new attacks that have

not been seen before. The drawback of this category of IDSs

is the occurrence of false positives.

Snort is a widely used open-source signature matching IDS

[12]. It has a large and publically available database of rules,

which covers known attacks, and it grows with each

discovered attack. Many commercial and experimental

systems use the snort rule syntax, due to its flexibility, and

ease of new rules creation. Fig. 1 shows the basic elements of

a Snort’s rule.

alert tcp any any -> 160.99.14.0/24 25 (content: “mail from:
root”; msg: “root attempts to send an email”; sid:12345)

Fig. 1. Example of Snort rule: left side of the rule contains network related

parameters; the right side of the rule in the brackets contains rule’s parameters

such as pattern, alert message, etc.

Any signature based IDS checks the presence of a

malicious signature in the incoming packet sequence and act

as instructed by the corresponding rule. The pattern matching

algorithm must be fast enough in order to meet the increase in

both the number of signatures and the link speed. Signature

based IDS systems, publically available or experimental,

usually differ in the pattern search algorithm, on one hand,

and the implementation technology, on the other hand

[8,9,10,11,12]. Since the release of version 2.0 in 2002, Snort

has utilized a high-speed multi-pattern search engine [15].

Before Snort 2.8.0, the default string-pattern matching

algorithm was ACF, whose speed of packet processing was

faster than AC-BNFA that is currently used, but it consumed

more memory [15].

In this paper we explore Myers pattern search algorithm

with rules in Snort syntax, as a core for the proposed IDS. The

Myers algorithm is an approximate string matching algorithm,

which uses the Levenshtein distance to compute the matches

[12]. The algorithm matches a large text t of length n with a

short pattern p of length m allowing up to k differences, where

k is a chosen threshold error. The example of the approximate

string matching is shown in Fig. 2. The matrix in Fig. 2 is

formed in three steps:

1) Fill the text t into the first row, and the pattern p into the

first column. The matrix will be of the order n x m.

2) Fill the second row with zeros, and the second column

with numbers 1,2,3,…,m.

3) Calculate all the values v in the matrix using the

formula:

jiji

ji

ji

ji

v

v

v

v

,1,1

1,

,1

, 1

1

min

,

where 0, ji if the characters in i-th row and j-th column

are the same, and 1, ji otherwise.

I C E T R A N P A L I C T R A N

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

T 2 2 1 0 1 2 2 2 2 2 2 2 1 2 2 2

R 3 3 2 1 0 1 2 3 3 3 3 3 2 1 2 3

A 4 4 3 2 1 0 1 2 3 4 4 4 3 2 1 2

N 5 5 4 3 2 1 0 1 2 3 4 5 4 3 2 1

Fig. 2. Example of approximate string matching

The distance of the search pattern from the particular

positions in the text can be seen in the last row. As the

example in Fig. 2 shows, there is one exact match (value 0).

However, there are few positions with the distance 1, etc.

The Myers algorithm encodes the columns by integer

numbers, and calculates the i-th column in iterative manner

using the value of the i-1 –th column and integer arithmetic.

The Myers algorithm is given in Fig. 3 [12].

Fig. 3. Myers pattern searching algorithm

As it is shown in Fig. 3, the Myers algorithm has a

preprocessing phase, followed by the search phase. In the

preprocessing phase it generates a bitmasks B, which are used

later on in the pattern search phase. One bitmap is generated

for each character C from the alphabet (text and pattern). The

generated bitmap B is equal to 0 if the character C is not in the

search pattern (Fig. 3).

III. HADOOP MAPREDUCE MODEL

In this section we give a brief introduction to the Apache

Hadoop platform and MapReduce model, as a basis for IDS

implementation.

The Apache Hadoop is a framework for distributed

processing of large data sets on clusters of computers using

MapReduce programming model, where each computer, or so

called “node” offers local computation and storage [16]. There

are two main components of Hadoop system: Hadoop

Distributed File System (HDFS), used for distributed data

storage, and MapReduce computing framework for data

manipulation. The HDFS is a layer above existing file system

of every node in cluster, and Hadoop uses its blocks to store

input files or parts of them. Large files are split into a group of

smaller parts called blocks (default block size is 64MB) [16].

Typical Hadoop execution has 4 parts: transferring input data

from Client host to HDFS, processing data using MapReduce

framework on the slave nodes, storing results by Master node

on HDFS, and reading data by Client host from HDFS.

In essence, MapReduce technique consists of two

transformations that can be applied many times on input files:

Map transformation, and Reduce transformation. During the

Map transformation, every Map task processes a small part of

the input file (input split) and passes the results to the Reduce

tasks (Fig. 4). After that, during the Reduce transformation,

Reduce tasks collect the intermediate results of Map tasks and

combine them in order to get the output.

During the execution of the Mapper, the Mapper calls a

Map function, which performs required computations.

Precisely, Map function transforms input dataset into the set

of output values (key, value). After that, intermediate data

with the same key are grouped and passed to the same Reduce

function. At the end, Reduce function summarizes all data

with the same key in order to get the final result (Fig. 4).

Fig. 4. The MapReduce execution

IV. DESIGN OF MAPREDUCE SUITABLE IDS

The workflow of the proposed IDS is shown in Fig. 5. The

workflow has three phases for network traffic fetching and

data format preparation (phases 1, 2 and 3 in Fig. 5), and one

central phase “pattern search” (phase 4 in Fig. 5). The

framework is designed in such manner to encapsulate the

pattern search into the phase that can be parallelized using

Hadoop framework from Fig. 4, and to prepare and provide

the data in required format for the central phase.

Fig. 5. The workflow of the proposed IDS

The intrusion detection starts with network packet fetching

(phase 1 in Fig. 5). For fetching the network packets we use

libpcap library. Other tools like Wireshark can be used, too.

The output of this phase is binary data collected from the

network in raw format. In order to simplify manipulation, the

raw data are decoded, and the most significant information,

such as IP addresses, ports and content, are extracted and

stored as strings. For this purpose we use tshark Linux

command line tool. The example of tshark tool usage is:

tshark -r <pcapfilename> -T fields -E separator=, -e ip.addr

-e _ws.col.Protocol -e tcp.port -e udp.port -e data >

output.txt
A part of the output of the tshark tool is shown in Fig. 6.

Each line in Fig. 6 contains the information from one fetched

network packet.

Fig. 6. The output of the tshark tool

The output can be filtered in order to remove the traffic

which is not of the interest for IDS, such as local traffic, etc.

(phase 3 in Fig. 5). Filtered or not, the output from Fig. 6 is

well prepared for the pattern search phase (phase 4 in Fig. 5).

The pattern search is performed on the Apache Hadoop.

The input data from Fig. 6 is divided in input splits and fed

into Hadoop Map tasks, which are executed in parallel. Each

mapper from Fig. 4 executes the Myers algorithm from Fig. 3

on its input split. There are no data dependencies, thus the

mappers can be executed in parallel.

It should be mentioned that the preprocessing phase of

Myers algorithm is performed only once for all Snort rules,

and the bitmaps are stored for the further use.

A mapper from Fig. 4 reads one line of input data at the

time, i.e. one network packet, and executes the Myers

algorithm. If a Snort rule pattern is found, the mapper emits

<key,value> pair, where the key stands for a network flow

attack identification, while the value is constant 1. The key is

in the format

 <sid>,<SourceIP>,<SourcePort>,<DestIP>,<DestPort>,

where sid is Snort rule ID, and the rest of the fields are the

identifications of the network flow.

Having the same key, the results from the same malicious

flow go to the same reducer (Fig. 4), which counts the

malicious packets on the flow and outputs the result.

V. IMPLEMENTATION AND EVALUATION RESULTS

The proposed IDS is evaluated using 1GB of fetch network

data containing 2.966.346 packets. The data is obtained by

merging the data from the network forensics site

asecuritysite.com and the data obtained in our lab

environment. The complete set of input data contained 400

malicious packets of the following types: Heartbleed attack

(sid=100000), three types of WonnaCry attacks (sid =

2024217, sid = 2024218, sid=2024220), and two malicious

flows with the same FTP brute force attack (sid=491) [4]. The

rules are obtained from the network forensics site

asecuritysite.com, too.

The evaluation is performed on single processor PC with

two-core i3 6006U CPU and 8GB of RAM. The results are

given in Table 1. The both systems were evaluated with the

same input data set. We used Apache Hadoop 2.9.0 and Snort

2.9.7.0 GRE (build 149). The file sizes in Table 1 differ due to

the fact that the Snort uses the raw data in the binary format

as an input, while the proposed system first decodes the

packets into a text format.
TABLE I

EVALUATION RESULTS

IDS

The input data

Processing

time
Size in

GB

of

malicious

packets

The Snort 1 400 2 min

The proposed

Hadoop IDS
1.6 400

1 min 34

sec

From Table 1, it can be seen that the proposed Hadoop IDS

is faster than the Snort for about 25%. The gain in the speed

obtain by involving both processor cores in this case is

compensated by the usage of robust framework and by data

preparation.

VI. CONCLUSION

In this paper the implementation of Intrusion Detection

System (IDS) on Apache Hadoop platform is proposed. The

design and the implementation of the proposed IDS are given

in details. Using the Hadoop platform we utilized

parallelization on multi-core processors and speedup the

system. The proposed system is evaluated and compared with

popular Snort IDS on a two-core i3 processor. The evaluation

results show that the proposed Hadoop IDS is about 25%

faster than Snort IDS.

ACKNOWLEDGMENT

The research was supported in part by the Serbian Ministry

of Education, Science and Technological Development

(Project TR32012).

REFERENCES

[1] Li Da Xu, Wu He, and Shancang Li, “Internet of things in industries: A

survey. IEEE Transactions on industrial informatics, 10(4), 2014,
pp.2233-2243.

[2] “Internet of Things connected devices installed base worldwide”, The

Statistics Portal, URL: www.statista.com/statistics/471264/, Accessed in
2018.

[3] Potter, Bruce, and Gary McGraw. "Software security testing." IEEE

Security & Privacy 2.5 (2004): 81-85.
[4] Tsoutsos, Nektarios Georgios, and Michail Maniatakos. "Trust No One:

Thwarting" heartbleed" Attacks Using Privacy-Preserving

Computation." VLSI (ISVLSI), 2014 IEEE Computer Society Annual
Symposium on. IEEE, 2014.

[5] Hunt, Ray. "Internet/Intranet firewall security—policy, architecture and

transaction services." Computer Communications 21.13 (1998): 1107-
1123.

[6] Endorf, Carl, Eugene Schultz, and Jim Mellander. Intrusion detection &

prevention. Emeryville, CA: McGraw-Hill/Osborne, 2004.
[7] Aldwairi, Monther, and Duaa Alansari. "Exscind: Fast pattern matching

for intrusion detection using exclusion and inclusion filters." Next

Generation Web Services Practices (NWeSP), 2011 7th International
Conference on. IEEE, 2011.

[8] Xu, Dongliang, Hongli Zhang, and Yujian Fan. "The GPU-based high-

performance pattern-matching algorithm for intrusion detection."
Journal of computational information systems 9.10 (2013): 3791-3800.

[9] Kharbutli, Mazen, Monther Aldwairi, and Abdullah Mughrabi.
"Function and data parallelization of Wu-Manber pattern matching for

intrusion detection systems." Network Protocols and Algorithms 4.3

(2012): 46-61.
[10] Su, Xiong, Zhenzhou Ji, and Xiaoyang Lian. "A Parallel AC Algorithm

Based on SPMD for Intrusion Detection System." Proceedings of the

2nd International Conference on Computer Science and Electronics
Engineering. Atlantis Press, 2013.

[11] Vasiliadis, Giorgos, et al. "Gnort: High performance network intrusion

detection using graphics processors." International Workshop on Recent
Advances in Intrusion Detection. Springer, Berlin, Heidelberg, 2008.

[12] Aldwairi, Monther, Ansam M. Abu-Dalo, and Moath Jarrah. "Pattern

matching of signature-based IDS using Myers algorithm under
MapReduce framework." EURASIP Journal on Information Security

2017.1 (2017): 9.

[13] Jeong, Hae-Duck J., et al. "Anomaly teletraffic intrusion detection
systems on hadoop-based platforms: A survey of some problems and

solutions." Network-Based Information Systems (NBiS), 2012 15th

International Conference on. IEEE, 2012.
[14] Aljarah, Ibrahim, and Simone A. Ludwig. "Mapreduce intrusion

detection system based on a particle swarm optimization clustering

algorithm." Evolutionary Computation (CEC), 2013 IEEE Congress on.
IEEE, 2013.

[15] Yoshioka, Atsushi, Shariful Hasan Shaikot, and Min Sik Kim. "Rule

hashing for efficient packet classification in network intrusion
detection." Computer Communications and Networks, 2008. ICCCN'08.

Proceedings of 17th International Conference on. IEEE, 2008.

[16] Lam, Chuck. Hadoop in action. Manning Publications Co., 2010.

