
 

 

Abstract — Growing influence of computer networks and 

Internet to everyday life, with more and more devices connected 

to global network, opens a new possibilities for malicious 

activities, while exposing the users to attacks even more, 

including their data and privacy. Due to the amount of data that 

need to be processed in order to detect such activities, intrusion 

detection and prevention systems become a challenging topic. 

The goal of this paper is the implementation of Intrusion 

Detection System (IDS) on the Apache Hadoop platform. The 

Hadoop implementation will enable task parallelization on multi-

core processors. The proposed system will be evaluated and 

compared with popular Snort IDS on a two-core i3 processor. 

The obtained results show that proposed Hadoop based IDS is 

about 25% faster then the Snort IDS. 

 

Index Terms — Network Security, IDS Systems, Hadoop 

MapReduce, Myers algorithm.  

 

I. INTRODUCTION 

 In the era of Internet of Things (IoT), where the goal, in a 

nutshell, is to connect every device and sensor that can be 

connected to the global network and build an application 

around them, the security of the devices and data that they 

produce becomes one of the key requirements [1]. According 

to The Statistical Portal “Statista”, the number of connected 

devices installed worldwide in 2017 is about 23 billion, and it 

is expected that the number will reach 75 billion in 2025 [2]. 

Unfortunately, software security testing is a commonly 

misunderstood and underestimated task [3]. Dynamic market 

often put tough timing requirements and deadlines that 

influence the development to reuse untested or poorly tested 

libraries and components, leaving potential doors open for 

attacks. Even the “well tested” libraries are not a guaranty that 

the exploit will not be found in the future [4]. In order to 

protect the system against threats in such an environment, a 

robust security architecture should be built.  

Legacy security architectures usually were limited to 

firewall as a key component that can permit or deny the traffic 
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to or from specific host or protocol [5]. However, todays 

exploits and attacks are far more sophisticated, and require 

deep network packet analysis. Examples include various 

distributed DoS attacks, zombie networks, etc.  

Deep packet analysis can be performed by Intrusion 

Detection Systems (IDS) and Intrusion Prevention Systems 

(IPS), which are commonly used components in the security 

architectures today [6]. An intrusion detection system (IDS) is 

a device or software application on network boundary that 

transparently monitors network traffic for malicious activity 

or policy violations. Any malicious activity detected by IDS is 

typically reported to the network administrator and recorded 

into log files. The IPS, in addition to IDS, is proactive and 

acts to prevent the malicious activity, for example, by 

adjusting the firewall rules. 

Taking into the account the growing number of devices and 

typical bandwidths on the network boundaries, the amount of 

data that need to be analyzed for malicious signatures 

becomes challenging. Several researchers proposed IDS 

implementations with aim to speed up network packet 

analysis [7-12]. Different approaches to task and data 

parallelism were exploited [9,10]. In [11] authors proposed 

GPU accelerated implementation of IDS. Some of the 

implementations aim to accelerate the pattern matching 

operation through parallelization using Phoenix++ and 

MAPCG MapReduce frameworks for multi-core CPUs [12].  

The goal of this paper is design and implementation of IDS 

system using Apache Hadoop MapReduce framework. The 

Apache Hadoop is a framework for development of 

distributed applications, which offers both task parallelization 

on multi-core processors, and distributed application 

execution. The IDS will be implemented using Myers pattern-

search algorithm as a core for signature-based packet analysis. 

The design of MapReduce IDS workflow will be described in 

details. The proposed system will be evaluated and compared 

with popular Snort IDS on a two-core i3 processor. The 

obtained results will show that proposed Hadoop based IDS is 

about 25% faster then the Snort IDS. 

The paper is organized as follows. Section 2 gives a brief 

introduction to IDS and Myers algorithm. Section 3 is devoted 

to the MapReduce framework, as a basis for the proposed 

Apache Hadoop implementation of IDS. Section 4 is the main 

section and presents the design of the IDS workflow on the 

Hadoop framework. Section 5 is devoted to the system 

evaluation, while in Section 6 concluding remarks are given. 
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II. CLASSIFICATION OF IDS AND THE ROLE OF MYERS 

ALGORITHM 

IDSs are classified, based on their network packet analysis 

model, into two categories: pattern (or signature) matching 

and anomaly detection [6,12,13]. The signature matching IDS 

monitors the network activity for a known misuse pattern that 

was previously identified as a malicious attempt [7,8]. The 

anomaly-detection IDS makes the decision based on a profile 

of a normal network behavior. The network “baseline” is 

often constructed using statistical or machine learning 

techniques [13,14].  

Signature matching IDSs utilize a database with malicious 

signatures that are prepared in advance. This leads to fast and 

reliable pattern matching operation, commonly used in the 

majority of commercial systems [14]. However, anomaly-

detection based IDSs are able to detect new attacks that have 

not been seen before. The drawback of this category of IDSs 

is the occurrence of false positives.  

Snort is a widely used open-source signature matching IDS 

[12]. It has a large and publically available database of rules, 

which covers known attacks, and it grows with each 

discovered attack. Many commercial and experimental 

systems use the snort rule syntax, due to its flexibility, and 

ease of new rules creation. Fig. 1 shows the basic elements of 

a Snort’s rule.  

 

alert tcp any any -> 160.99.14.0/24 25 (content: “mail from: 
root”; msg: “root attempts to send an email”; sid:12345) 

 
Fig. 1.  Example of Snort rule: left side of the rule contains network related 

parameters; the right side of the rule in the brackets contains rule’s parameters 

such as pattern, alert message, etc. 

 

Any signature based IDS checks the presence of a 

malicious signature in the incoming packet sequence and act 

as instructed by the corresponding rule. The pattern matching 

algorithm must be fast enough in order to meet the increase in 

both the number of signatures and the link speed. Signature 

based IDS systems, publically available or experimental, 

usually differ in the pattern search algorithm, on one hand, 

and the implementation technology, on the other hand 

[8,9,10,11,12]. Since the release of version 2.0 in 2002, Snort 

has utilized a high-speed multi-pattern search engine [15]. 

Before Snort 2.8.0, the default string-pattern matching 

algorithm was ACF, whose speed of packet processing was 

faster than AC-BNFA that is currently used, but it consumed 

more memory [15]. 

In this paper we explore Myers pattern search algorithm 

with rules in Snort syntax, as a core for the proposed IDS. The 

Myers algorithm is an approximate string matching algorithm, 

which uses the Levenshtein distance to compute the matches 

[12]. The algorithm matches a large text t of length n with a 

short pattern p of length m allowing up to k differences, where 

k is a chosen threshold error. The example of the approximate 

string matching is shown in Fig. 2. The matrix in Fig. 2 is 

formed in three steps:  

1) Fill the text t into the first row, and the pattern p into the 

first column. The matrix will be of the order n x m. 

2) Fill the second row with zeros, and the second column 

with numbers 1,2,3,…,m. 

3) Calculate all the values v in the matrix using the 

formula: 























jiji

ji

ji

ji

v

v

v

v

,1,1

1,

,1

, 1

1

min



, 

where 0, ji  if the characters in i-th row and j-th column 

are the same, and 1, ji  otherwise. 

 

 
I C E T R A N P A L I C T R A N 

 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

T 2 2 1 0 1 2 2 2 2 2 2 2 1 2 2 2 

R 3 3 2 1 0 1 2 3 3 3 3 3 2 1 2 3 

A 4 4 3 2 1 0 1 2 3 4 4 4 3 2 1 2 

N 5 5 4 3 2 1 0 1 2 3 4 5 4 3 2 1 

 

Fig. 2.  Example of approximate string matching 
 

The distance of the search pattern from the particular 

positions in the text can be seen in the last row. As the 

example in Fig. 2 shows, there is one exact match (value 0). 

However, there are few positions with the distance 1, etc. 

The Myers algorithm encodes the columns by integer 

numbers, and calculates the i-th column in iterative manner 

using the value of the i-1 –th column and integer arithmetic. 

The Myers algorithm is given in Fig. 3 [12]. 

 
Fig. 3. Myers pattern searching algorithm 

 



 

As it is shown in Fig. 3, the Myers algorithm has a 

preprocessing phase, followed by the search phase. In the 

preprocessing phase it generates a bitmasks B, which are used 

later on in the pattern search phase. One bitmap is generated 

for each character C from the alphabet (text and pattern). The 

generated bitmap B is equal to 0 if the character C is not in the 

search pattern (Fig. 3).  

III. HADOOP MAPREDUCE MODEL 

In this section we give a brief introduction to the Apache 

Hadoop platform and MapReduce model, as a basis for IDS 

implementation. 

The Apache Hadoop is a framework for distributed 

processing of large data sets on clusters of computers using 

MapReduce programming model, where each computer, or so 

called “node” offers local computation and storage [16]. There 

are two main components of Hadoop system: Hadoop 

Distributed File System (HDFS), used for distributed data 

storage, and MapReduce computing framework for data 

manipulation. The HDFS is a layer above existing file system 

of every node in cluster, and Hadoop uses its blocks to store 

input files or parts of them. Large files are split into a group of 

smaller parts called blocks (default block size is 64MB) [16]. 

Typical Hadoop execution has 4 parts: transferring input data 

from Client host to HDFS, processing data using MapReduce 

framework on the slave nodes, storing results by Master node 

on HDFS, and reading data by Client host from HDFS. 

In essence, MapReduce technique consists of two 

transformations that can be applied many times on input files: 

Map transformation, and Reduce transformation. During the 

Map transformation, every Map task processes a small part of 

the input file (input split) and passes the results to the Reduce 

tasks (Fig. 4). After that, during the Reduce transformation, 

Reduce tasks collect the intermediate results of Map tasks and 

combine them in order to get the output. 

During the execution of the Mapper, the Mapper calls a 

Map function, which performs required computations. 

Precisely, Map function transforms input dataset into the set 

of output values (key, value). After that, intermediate data 

with the same key are grouped and passed to the same Reduce 

function. At the end, Reduce function summarizes all data 

with the same key in order to get the final result (Fig. 4).  

 

 
 

Fig. 4. The MapReduce execution 

IV. DESIGN OF MAPREDUCE SUITABLE IDS  

The workflow of the proposed IDS is shown in Fig. 5. The 

workflow has three phases for network traffic fetching and 

data format preparation (phases 1, 2 and 3 in Fig. 5), and one 

central phase “pattern search” (phase 4 in Fig. 5). The 

framework is designed in such manner to encapsulate the 

pattern search into the phase that can be parallelized using 

Hadoop framework from Fig. 4, and to prepare and provide 

the data in required format for the central phase.  

 

 
Fig. 5. The workflow of the proposed IDS 

 

The intrusion detection starts with network packet fetching 

(phase 1 in Fig. 5). For fetching the network packets we use 

libpcap library. Other tools like Wireshark can be used, too. 

The output of this phase is binary data collected from the 

network in raw format. In order to simplify manipulation, the 

raw data are decoded, and the most significant information, 

such as IP addresses, ports and content, are extracted and 

stored as strings. For this purpose we use tshark Linux 

command line tool. The example of tshark tool usage is: 

tshark -r <pcapfilename> -T fields -E separator=, -e ip.addr 

-e _ws.col.Protocol -e tcp.port -e udp.port -e data > 

output.txt 
A part of the output of the tshark tool is shown in Fig. 6. 

Each line in Fig. 6 contains the information from one fetched 

network packet. 

 
Fig. 6. The output of the tshark tool 

 

The output can be filtered in order to remove the traffic 

which is not of the interest for IDS, such as local traffic, etc. 

(phase 3 in Fig. 5). Filtered or not, the output from Fig. 6 is 

well prepared for the pattern search phase (phase 4 in Fig. 5).  

The pattern search is performed on the Apache Hadoop. 

The input data from Fig. 6 is divided in input splits and fed 

into Hadoop Map tasks, which are executed in parallel. Each 

mapper from Fig. 4 executes the Myers algorithm from Fig. 3 

on its input split. There are no data dependencies, thus the 

mappers can be executed in parallel.  

It should be mentioned that the preprocessing phase of 

Myers algorithm is performed only once for all Snort rules, 



 

and the bitmaps are stored for the further use. 

A mapper from Fig. 4 reads one line of input data at the 

time, i.e. one network packet, and executes the Myers 

algorithm. If a Snort rule pattern is found, the mapper emits 

<key,value> pair, where the key stands for a network flow 

attack identification, while the value is constant 1. The key is 

in the format 

 <sid>,<SourceIP>,<SourcePort>,<DestIP>,<DestPort>, 

where sid is Snort rule ID, and the rest of the fields are the 

identifications of the network flow.  

Having the same key, the results from the same malicious 

flow go to the same reducer (Fig. 4), which counts the 

malicious packets on the flow and outputs the result.  

V. IMPLEMENTATION AND EVALUATION RESULTS 

The proposed IDS is evaluated using 1GB of fetch network 

data containing 2.966.346 packets. The data is obtained by 

merging the data from the network forensics site 

asecuritysite.com and the data obtained in our lab 

environment. The complete set of input data contained 400 

malicious packets of the following types: Heartbleed attack 

(sid=100000), three types of WonnaCry attacks (sid = 

2024217, sid = 2024218, sid=2024220), and two malicious 

flows with the same FTP brute force attack (sid=491) [4]. The 

rules are obtained from the network forensics site 

asecuritysite.com, too.  

The evaluation is performed on single processor PC with 

two-core i3 6006U CPU and 8GB of RAM. The results are 

given in Table 1. The both systems were evaluated with the 

same input data set. We used Apache Hadoop 2.9.0 and Snort 

2.9.7.0 GRE (build 149). The file sizes in Table 1 differ due to 

the fact that the Snort uses the raw data in the binary format 

as an input, while the proposed system first decodes the 

packets into a text format. 
TABLE I 

EVALUATION RESULTS 

IDS 

The input data 

Processing 

time 
Size in 

GB 

# of 

malicious 

packets 

The Snort 1 400 2 min 

The proposed 

Hadoop IDS 
1.6 400 

1 min 34 

sec 

 

From Table 1, it can be seen that the proposed Hadoop IDS 

is faster than the Snort for about 25%. The gain in the speed 

obtain by involving both processor cores in this case is 

compensated by the usage of robust framework and by data 

preparation.  

VI. CONCLUSION 

In this paper the implementation of Intrusion Detection 

System (IDS) on Apache Hadoop platform is proposed. The 

design and the implementation of the proposed IDS are given 

in details. Using the Hadoop platform we utilized 

parallelization on multi-core processors and speedup the 

system. The proposed system is evaluated and compared with 

popular Snort IDS on a two-core i3 processor. The evaluation 

results show that the proposed Hadoop IDS is about 25% 

faster than Snort IDS.  
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