
 

 

 

Abstract— Foot tapping represents a standard clinical test 

used for the assessment of motor abilities of patients with 

Parkinson’s disease (PD). In this paper, we analyzed the data 

recorded by gyroscope mounted on a foot bridge during the foot 

tapping test (FTT). The data was collected from 17 healthy 

controls, 17 patients with PD and 17 patients with Multiple 

System Atrophy (MSA). By using the several signal processing 

techniques, we extracted the features, and organized these into 

three datasets based on their type and clinical usability. One 

dataset comprised basic spatio-temporal features: tapping angle, 

duration and speed, whereas the second feature set included two 

more spatio-temporal features: maximum lifting and maximum 

foot drop velocities. Frequency-based parameters describing tap-

to-tap variability and rhythm regularity were further added 

forming the third feature set. The feature sets were fed to the 

Support Vector Machine, and the accuracy was assessed with 10-

fold cross validation. Obtained results showed that frequency-

based parameters contribute to better differentiation between 

the evaluated groups with accuracy of 83.94±1.17%. 

Index Terms—Foot tapping; Classification; Parkinson’s 

disease; Multiple System Atrophy; Frequency analysis.  

I. INTRODUCTION 

Foot (or toe) tapping represents clinical test that is 

commonly used for the assessment of motor abilities and 

estimation of rigidity and tremor in patients with Parkinson’s 

disease (PD) [1], [2]. It is evaluated as a part of the Unified 

Parkinson Disease Rating Scale (UPDRS) [3]. Within the test, 

the patients are asked to tap their toes as fast as possible for 

10-15 s, while holding the heel on the ground. The assessment 

is performed visually by the physicians. Such subjective 

quantification may result with rough resolution and imprecise 
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evaluation [4]. There is a great need for new systems and 

methodologies that could contribute to precise and objective 

quantification of tapping performance, and potentially lead to 

development of new automatic diagnostic systems.  

 By using small and lightweight wearable sensors, tapping 

performance can be objectively described and quantified. 

Inertial measurement units (IMU), comprising 3-axis 

accelerometers and/or 3-axis gyroscopes, were already applied 

in several studies for objective quantification of toe and finger 

tapping tests. The evaluation was performed with variety of 

different spatio-temporal features (such as rhythm, amplitude, 

tapping angle, opening velocity, etc.) [5]-[7].  

Some studies suggested that frequency-based parameters 

can provide better quantification of tapping performance [8], 

[9]. Both time and frequency domain features were extracted 

from finger and toe tapping inertial data. Support Vector 

Machine was used for classification between PD patients and 

healthy controls, with error rate over 30% for both datasets 

[10]. The results showed that, by using several measures of 

motor performances, patients with PD and healthy subjects 

can be differentiated with accuracy, sensitivity, and specificity 

of above 88% [11]. Others reported that PD patients can be 

discriminated from healthy controls with accuracy over 90%, 

using the features extracted from accelerations and angular 

velocities describing finger tapping [12], [13].  

In a case of differential diagnostics where other diseases or 

atypical PD forms are included in analysis, objective 

quantification and automatic prediction becomes more 

demanding. Multiple System Atrophy (MSA) represents 

atypical form of Parkinson’s disease that has very low 

response to standard treatment of PD [14]. The symptoms 

may be confused with those in PD, especially in early stages 

of disease.  

Different approaches were used for distinction between PD 

patients, and those with some atypical form of Parkinsonian 

syndrome. It was shown that MRI images of PD patients can 

be distinguished of those obtained from MSA patients with 

accuracy of 97% [15]. PET scans were also used for 

discrimination between healthy controls and PD, as well as 

healthy controls and MSA patients [16]. However, to our 

knowledge, there is no system based on wearable inertial 

technology providing classification between parkinsonisms.  

In this paper, we present a methodology for discrimination 

between three groups of subjects: patients with Parkinson 

disease, patients with Multiple System Atrophy and healthy 

controls. The classification is based on the use of Support 

Vector Machine model, trained on three feature sets, extracted 

from the inertial data describing foot tapping movements.  
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II. METHOD 

A. Instrumentation 

The measurement system includes one miniature inertial 

measurement unit (IMU), and one force plate [17]. IMU 

comprises a 3D gyroscope L3G4200 (STMicroelectronics, 

USA). During testing, the IMU is attached directly to the foot 

bridge and, with light and tiny cable, connected to sensor 

control unit (SCU), positioned on the leg. The inertial unit is 

small and lightweight, allowing subjects to naturally perform 

the task.  

The force platform is a mechanical construction with 

combination of active and passive areas corresponding to 

metatarsal and heel, respectively. The passive plate is 

connected to the fixed part of the platform, while active plate 

allows measurement of force range up to 50N. The platform is 

connected to the SCU, and all system components are fully 

synchronized. 

B. Experiment 

Seventeen patients with Parkinson disease - PD (Age: 

61.9±8.4 years), seventeen patients with Multiple System 

Atrophy – MSA (Age: 58.1±4.5 years), and seventeen age and 

gender matched healthy controls – CTRL (Age: 59.0±8.9 

years) were enrolled in this study. During the experiment, the 

subjects were sitting comfortably in the chair with their feet 

lowered to the ground.  

The participants were asked to perform foot tapping test: to 

tap their toes and metatarsals (while holding the heel on the 

ground), as fast and as high as possible, during the 15 s of test. 

Three recordings were made for each leg separately, with one 

minute of rest period in between. 

The study was performed at the Neurology Clinic, Clinical 

Centre of Serbia. The subjects gave their written consent prior 

to the participation in the study. The experiment was 

performed in accordance with the ethical standards of the 

Declaration of Helsinki.  

C. Signal processing 

The signals were recorded with the sampling frequency of 

fs=200 Hz. Acquired signals were processed by custom-made 

software (scripts written in Matlab 7.6.0., R2008a). In the 

analysis, we have used the gyro axis ω that describes foot 

rotations in a sagittal plane. The examples of recorded gyro 

signals for the three groups are presented in Fig. 1.  
 

 
Fig. 1. The examples of 2 s of recorded gyro signals for one CTRL subject, 

one PD patient and one MSA patient. 

 

1) Feature extraction 

In order to quantify tapping performance, we have 

extracted a set of parameters that can be used for objective 

quantification of the foot tapping test. The parameters were 

organized in three datasets: 1) basic spatio-temporal 

parameters expressing tap angle, duration and speed; 2) all 

spatio-temporal parameters expressing tap angle, duration, 

speed, maximum foot lifting and maximum foot drop 

velocity; 3) all spatio-temporal parameters and frequency-

based parameters describing tap-to-tap variability and rhythm 

regularity.  

a) Spatio-temporal parameters 

The parameters were designed to match the criteria that are 

relevant within the UPDRS scale for assessment of patients’ 

motor abilities. Therefore, the first feature set comprised: 

maximum tap angle and duration and tapping speed.  

In order to obtain tapping angle, the gyro signal was 

integrated. The normalized ground reaction force (GRFN) 

signal obtained from the force platform was used for drift 

removal (Fig. 2): high peaks in GRFN signal represent the 

instants when toes and metatarsals strike the ground, i.e. when 

the angle between the foot and the ground equals to zero. We 

have fitted the cubic spline polynomial in between those 

samples and subtracted it from the drifted angle sequence 

[18]. 

 
Fig. 2. The representation of: top) undrifted (red dashed line) and drifted 

(solid black line) angle sequence, bottom) normalized ground reaction force 
(GRFN) signal. Red triangles mark detected peaks that correspond to toes and 

metatarsals ground impact moments. The example is given for CTRL subject. 

 

The segmentation of the tapping sequence is performed 

based on the positive peaks in the force data (red triangles in 

the bottom panel, Fig. 2). The tap duration is expressed as 

temporal distance between the two consecutive peaks. The 

mean value of lifting and foot drop velocities for each 

individual tap represents the tapping speed. 

The abovementioned features were calculated for each 

individual tap, and final parameters were expressed with the 

following: mean value (averaged over all taps), standard 

deviation (over all taps), coefficient of variation – CV 

(calculated as the ratio of standard deviation and mean value, 

expressed in percentage) and slope of the linear regression, 

fitted through values obtained for individual taps. Therefore, 

the first feature set included twelve parameters for 

quantification of tapping performance.  

 In addition to these basic parameters, we have introduced 

features describing the maximum foot lifting rate (positive 

peaks in Fig. 1.), and the maximum rate of the foot drop 



 

(negative peaks in Fig. 1). Both velocities were calculated for 

each individual tap and expressed with parameters that were 

introduced earlier: mean value, standard deviation, CV [%] 

and slope. Finally, the second feature set comprised 20 

parameters.  

b) Frequency domain analysis 

In addition to spatio-temporal parameters, we have 

implemented frequency domain methods that can contribute 

to better evaluation and description of tapping performance 

[9].  

By using the Continuous Wavelet Transform (CWT) it is 

possible to quantify tapping performance in terms of rhythm 

regularity [9]. By using the algorithm that is based on the Fast 

Fourier Transform, CWT coefficients of gyro signal were 

calculated (Fig. 3) using the complex Morlet mother wavelet 

(center frequency f0=1 Hz). Time resolution of the resulting 

coefficient matrix was 5 ms, whereas frequency resolution 

was set to 0.1 Hz. By summing the absolute values of CWT 

coefficients, we obtained additional characteristic: cross-

sectional area perpendicular to the t-axis (CSA-Ttot). Final 

CSA-Ttot values were expressed as percent of its maximum 

energy (Fig. 3) [9]. The regions with energy loss below the 

threshold of TH=50% correspond to modified rhythmic 

behavior, and these regions were described in terms of 

energy-loss duration (parameter CWT<50 expressed in 

seconds). 

 
Fig. 3. The representation of: top) CWT coefficients, and bottom) calculated 

CSAtot characteristic. Red dashed line marks introduced threshold TH at 50%. 

The example is given for PD patient. 

 

It was suggested that parameters describing the main peak 

within the Welch’s estimation of power spectral density 

function can provide adequate quantification of signal intra-

variability [19]. The method was evaluated for two sets of 

data: gait [19] and finger tapping [9] for PD patients and 

healthy subjects. The parameters include (Fig. 4): the peak 

frequency PSDf, the peak amplitude or height PSDh, the peak 

width PSDw (at half of the peak’s amplitude) and the peak 

slope PSDs (from the peak maximum to the point of half of 

the peak’s amplitude). Higher values of width and smaller 

values of slope indicate higher intra-variability [19].  

The third feature set included frequency-based parameters: 

CWT<50, PSDf, PSDh, PSDs, and PSDw, in addition to 

previously introduced spatio-temporal parameters, comprising 

25 parameters in total. 

 
Fig. 4. Power spectral density function with peak’s frequency and 

amplitude (PSDf, PSDh), slope (PSDs) and width at half of peak's amplitude 

(PSDw). The example is given for PD patient. 

 

2) Classification  

The obtained parameters were used for classification 

among 3 groups of subjects: CTRL, PD, and MSA. For 

classification we have used Support Vector Machine (SVM). 

SVM represents a supervised learning algorithm that forms a 

decision boundary separating different classes in the feature 

space. It is given in a form of hyperplane, and while training, 

classifier aims to maximizes margin, i.e. the distance between 

the support vectors (closest data points) and hyperplane [20]. 

SVM performs binary classification, but for purposes of 

multi-class classification “one-vs-all” method is used. SVM 

uses kernels, i.e. similarity functions for achieving complex 

non-linear classification. In our implementation, we applied 

one of the most commonly used kernel functions – radial basis 

function (RBF).  

At first, the input parameters were centered and normalized 

with their standard deviation. Afterwards, the classifier was 

separately trained for each of the introduced feature sets. The 

classifier was evaluated with 10-fold cross validation. Due to 

different initial conditions, the procedure was repeated 10 

times for each feature set and the final result was averaged 

over all repetitions.  

 

3) Data visualization 

For the purpose of data visualization, we have implemented 

Principal Component Analysis (PCA). PCA allows 

transformation of data into new feature space, where axes 

correspond to principal components (PCs). The components 

are obtained as linear combinations of original feature vectors. 

As PCs are orthogonal to each other, there is no information 

redundancy. We have calculated the percentage of data 

variance described by each of the components. The first three 

components explain more than 95% of variance (Fig. 5), and 

therefore the original data can be presented in 3D PC space, 

without losing significant amount of information.  

 
Fig. 5. The data variance explained with first 8 principal components.  



 

III. RESULTS 

The three feature sets were used for classification among 

CTRL, PD and MSA groups. The database included 17 

subjects per group, 3 recordings per subject, in total: 153 

examples for classification. The descriptive statistics (average 

± standard deviation) of introduced spatio-temporal and 

frequency-based parameters are shown in Table I and Table 

II, respectively. The results are presented for all three subject 

groups.  

TABLE I 

DESCRIPTIVE STATISTICS (AV±STD) OF ALL SPATIO-TEMPORAL PARAMETERS 

Feat. Par. CTRL PD MSA 

Duration 

[s] 

Mean 0.39±0.09 0.46±0.14 0.75±0.44 

Std 0.07±0.03 0.09±0.04 0.18±0.16 

CV 17.51±7.08 20.51±9.76 23.36±16.57 

Slope 0.01±0.03 0.02±0.05 -0.03±0.03 

Angle  

[º] 

Mean 18.04±7.37 9.53±3.98 8.56±5.27 

Std 2.79±1.14 1.87±0.89 1.42±0.58 

CV 16.32±6.08 21.83±10.44 20.68±11.03 

Slope 0.01±0.19 -0.04±0.12 -0.02±0.13 

Average 

velocity 

[º/s] 

Mean 96.5±27.3 46.2±13.2 28.6±13.5 

Std 15.54±5.52 9.66±4.71 6.35±2.56 

CV 16.53±5.29 22.11±10.61 25.27±12.13 

Slope -0.17±0.63 0.34±0.48 -0.13±0.38 

Max. 

lifting 

rate  

[º/s] 

Mean 207.2±73.0 105.8±46.6 71.0±34.4 

Std 38.46±20.36 26.78±15.94 16.49±6.88 

CV 18.26±6.31 25.67±10.61 25.27±8.55 

Slope -0.24±1.86 -0.49±1.23 -0.21±1.21 

Max. 

rate of 

foot 

drop 

[º/s] 

Mean -258.7±68.6 -174.1±57.9 -114.6±58.8 

Std 42.49±22.85 37.62±17.37 25.75±10.02 

CV 16.74±9.07 23.98±11.99 26.88±13.58 

Slope 0.52±1.81 1.47±2.04 0.48±2.09 

TABLE II 

DESCRIPTIVE STATISTICS (AV±STD) OF FREQUENCY-BASED PARAMETERS 

Parameter CTRL PD MSA 

CWT<50 [s] 2.43±1.91 5.65±2.89 8.31±3.41 

Peak height, PSDh [psd] 2.85±0.75 2.58±0.91 1.98±1.09 

Peak frequency, PSDf 

[Hz] 
1.43±0.43 1.01±0.37 1.09±0.42 

Peak slope, PSDs 

[psd/Hz] 
3.35±1.62 2.34±1.28 2.67±1.39 

Peak width, PSDw [Hz] 0.48±0.12 0.49±0.15 0.48±0.15 

 

The classification was performed for three datasets 

separately and evaluated using the 10-fold cross validation. 

The results are presented in Table III, as descriptive statistics 

(av.± st. dev.), obtained for 10 repetitions. 

As shown, the best result was obtained for the third feature 

set (grey shaded row in Table III), that contains 25 

parameters, including all spatio-temporal features and 

frequency-based parameters. For that case, we have 

graphically presented results in 3D principal component space 

(Fig. 6).  

TABLE III 

DESCRIPTIVE STATISTICS (AV±STD) OF CLASSIFICATION ACCURACY, FOR ALL 

THREE FEATURE SETS 

Feature set Accuracy [%] 

I 74.70±1.72 

II 79.87±1.11 

III 83.94±1.17 

IV. CONCLUSION 

In this paper, we presented the results of the classification 

among three groups of subjects: healthy controls and two 

groups of parkinsonisms: one typical (PD) and one atypical 

(MSA). The analysis is based on the inertial data describing 

foot tapping movements. 

Support Vector Machine model with RBF kernel was 

applied for classification. The features were extracted and 

organized into three datasets based on their type and clinical 

usability. The first set comprises only basic spatio-temporal 

features: tapping angle, duration and speed. These features are 

commonly evaluated in clinical practice. As shown in Table 

III, this feature set performed poorly, with error rate higher 

than 25%. We added two extra spatio-temporal features to 

initial dataset and examined the performance of all included 

parameters. However, although slightly higher, the 

classification accuracy didn’t improve significantly, with error 

rate above 20%. The complete and final set included 5 more 

features that were extracted with Continuous Wavelet 

Transform (CWT) and Welch’s estimation of power spectral 

density (PSD) function. It was already shown in the literature 

that these features can be used for objective quantification and 

evaluation of finger tapping patterns [9]. CWT may be used 

for estimation of duration of rhythm interruptions/hesitations. 

Peak from PSD function can be a good indicator of signal 

intra-variability (tap-to-tap variability). In a case with all 

parameters included, the classification outperformed the 

previous two cases with accuracy of 83.94%. This result 

suggests that frequency-based features contribute to better 

differentiation among the three groups (Fig. 6). 

In the literature, majority of the methodologies use finger 

tapping data for classification between PD patients and 

healthy controls. It was reported that using the finger tapping 

inertial data, healthy controls and PD patients can be 

discriminated with high accuracy above 90% [12], [13]. 

However, no similar result was published for the analysis that 

includes atypical PD forms or foot tapping data. Classification 

between typical and atypical PD forms was usually based on 

the use of medical images, obtained from MRI and PET 

scanners. Such analysis can provide classification with high 

accuracy; however, it is time consuming and expensive. The 

methodology presented in this paper requires simple and fast 

setup, and provides automated analysis, that can be applied 

with little or no technical skills of medical staff. In addition, 

the methodology provides classification of three groups with 

acceptable accuracy.  

Our future work will include enhancement of features and 

examination of their potential for differential diagnostics 

(testing on other atypical PD forms).  



 

 
 

Fig. 6. The presentation of obtained results for the third feature set in 3D principal component space. 
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