IZLOŽENOST KORISNIKA VIDEO DISPLEJ TERMINALA X ZRAČENJU I PROMENLJIVIM ELEKTROMAGNETSKIM POLJIMA VRLO NISKIH FREKVENTIJA

Dejan Živković, Slavica Vukelić, Institut za medicinu rada Zavoda za prevenciju medicinu VMA, Beograd
Miroslav Rančić, Laboratorija za zaštitu, Institut za nuklearnje nauke "Vintila", Beograd
Branimir Vulević, "Institut za zaštitu na radu, zaštitu od požara i zaštitu životne okoline", Beograd

Sadržaj – Video displej terminal (VDT-Video Display Terminal) emitiraju: X razeanje, optičko zračenje (ultravioleto - UV), vidljivo i infracrveno – IC zračenje, radio-frekventni zračenje, elektromagnetika polja vrlo niskih i ekstremno niskih frekvencija (VLF – very low frequencies and ELF – extremely low frequencies), kao i statičko električno polje. Cilj rada je bio da se ispita izloženost korisnika VDT-terminalom i IC zračenju i promenljivim električnim (E) i magnetkim (M) poljima vrlo niskih frekvencija (3 kHz-30 kHz). Ismerene vrednosti su X razeanje su manje od normativne vrednosti od 5 µS/h koja je definisana u domaćem Pravilniku. Rezultati merenja gustine M fluksa i jačine E polja na 30 cm su prenapet disgiutene vrednosti za profesionalnu izloženost i za izlaganje opšte populaciji iz preporuke Međunarodne komisije za zaštitu od nejonzinjskog zračenja (ICNIRP).

1. UVOD
VDT je uređaj za vizualno predstavljanje informacija iz računara koji se sastoji od ekran i tastature. Zahvaljujući popularnosti personalnih računara, VDT su postali sastavni deo ne samo radne već i životne sredine. Po podacima istraživača danas već 150 miliona ljudi u svetu koristi personalni računar u toku rada. Video displej terminali (sa katodnom cevi) su potencijalni izvor jonizirajućeg i nejonzinjskog zračenja. Korisnici VDT se najviše čine na mišićno-keletne poremećaje i disfunkciju organska vica koje često prate glavobolja i opštii zamor, dok se promene na koži javljaju rade.

VDT emitiraju: X razeanje, optičko zračenje (ultravioleto - UV, vidljivo i infracrveno – IC zračenje), radio-frekventno zračenje, elektromagnetika polja vrlo niskih i ekstremno niskih frekvencija (VLF – very low frequencies and ELF – extremely low frequencies), kao i statičko električno polje.

Katodna cev, koja jednim svojim krajem formira ekran, obično radi pri visokim naponima i to uglavnom između 11 kV i 18 kV za crno-bele ili monohromatske jedinice. Mnogo viši naponi (preko 25 kV) su prisutni kod jedinica u boji. Katodna cev osićava elektrode koje bivaju izbrani sa ekrama. Slika na ekranu VDT-a nastaje projektovanjem električnih snopova koji se po ekranu pomeraju po horizontalnoj ili vertikalnoj osi. Ovo horizontalno i vertikalno skeniranje je kontrolisano pomoću kalemova za horizontalno i vertikalno skeniranje, tako da svaki pun kraj se snop kreće preko ekrama, ose da na izgovačajnička način on pomeri pomoću defleksionih kalemova za horizontalno i vertikalno skeniranje.

Vrlo niske frekvencije potiču od struje u kalem za vertikalno skeniranje i javljaju se na izlaza flajbek transformatora. Cilj rada je bio da se ispita izloženost korisnika VDT jonizirajućem i E polju i promenljivim električnim (E) i magnetkim (M) poljima vrlo niskih frekvencija (3 kHz-30 kHz).

2. MATERIJAL I METODE
Visoki napon katodne cevi predstavlja mogućnost za pojavu X zračenja. X razeanje ekrama VDT je male energije i spada u neko X zračenje. Ovakvo zračenje se zadržava tra statka ekrama monitora, koje predstavlja doba efikasnu zaštitu.[4] Ako dođe do zračenja i prođe kroz ovo statko treba znati da njegov intenzitet na raspolaganje oko 40 cm od površine ekrama opadanje za 90%. Kako bi se obezbedila zaštitu, doneseni su standardi kojima su proizvođači monitora i televizora obavezni za zračenje sredu na nivo koji ne bi mogla zakočiti korisnika.

Kod osnovne predstavljanja za pojavu X zračenja, X razeanje ekrama VDT je male energije i spada u neko X zračenje. Ova izloženost je objavljena u Slažbenom listu SRS broj 32/1998, u njezovog člana 77 se određuje da kod TV prijemnika u boji ili TV monitora jačina ekvivalentne doze na 5 cm od površine katodne cevi ne smije biti veća od 5 µS/h. X razeanje je mereno na 5 cm od površine ekrama kod 22 VDT. Merenje je vršeno uređajem Victory 440 RFM, SAD (Slika 1.) [4].

Merenje jačine E polja i gustine M fluksa VLF je vršeno na udaljenosti od 30 cm od centra ekrama i na 5 cm iznad i podložno od staklenih površina VDT-a. Obrazen je 51 tip VDT-a.

U normalnom radnom položaju rukovaca VDT-a je udaljen od 30 cm od ekrama, merenje je vršeno u uslovima najmanjeg radnja. Merenje je vršeno instrumentom HI-3603 VDT/VLF Survey Meter, firme Holaday Industries, Inc, SAD (Slika 2.). Instrument ima približno ravan odziv i meri efektivnu vrednost jačine E polja u opsegu 2-330 kHz, tij. gustine magnetskog fluksa u opsegu od 8-3000 kHz. Priklupom merenja jačine E polja, sonda instrumenta je držana paralelno ravni ekrama. Upotrebom odvjetnika obezbeđuje se da sonda bude udaljena 30 cm od ekrama. Kod merenja magnetske indukcije, sonde instrumenta je držana u ravnim normalnom na površini ekrama. Takode upotrebom odvjetnika obezbeđuje se da centar sondi bude udaljen 30 cm od ekrama. Prezentvni odziv sondi pokriva frekventni opseg spektra zračenja od VDT.
Izmerene vrednosti za X zračenje su manje od normativne vrednosti od 5 μSv/h oja je definisana u navedenom Pravilniku o uslovima za promet i korišćenje radioaktivnih materijala, rentgen-opeara i drugih uređaja koji proizvode ionizujuće zračenje.

<table>
<thead>
<tr>
<th>Rezultati merenja X zračenja</th>
<th>Redni broj VDT</th>
<th>X zračenje (μSv/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Rezultati merenja gustine M fluksa i jačine E polja na 30 cm su dati u Tabeli 2 i grafidi na slikama 3 i 4. Poredenjem dobijenih rezultata i normativnih vrednosti iz tabele može se vidi da izmerene jačine E polja (od 0,6 V/m do 6 V/m) i gustine M fluksa (od 70 nT do 230 nT) na 30 cm od ekrana, ne prelaze dopuštene vrednosti za profesionalnu izloženost i za izlaganje opšte populacije iz navedenih propisova ICNIRP.

Rezultati merenja gustine M fluksa i jačine E polja na 30 cm su dati u Tabeli 2 i grafidi na slikama 3 i 4. Poredenjem dobijenih rezultata i normativnih vrednosti iz tabele može se vidi da izmerene jačine E polja (od 0,6 V/m do 6 V/m) i gustine M fluksa (od 70 nT do 230 nT) na 30 cm od ekrana, ne prelaze dopuštene vrednosti za profesionalnu izloženost i za izlaganje opšte populacije iz navedenih propisova ICNIRP.

Na rastojanju 5 cm od bočnih i gornjih površina VDT izmerene vrednosti su se kretale od 0,45 V/m do 850 V/m za jačinu E polja, a za gustinu M fluksa od 26 nT do 2000 nT. Izmerena jačina E polja samo na jednom terminalu (na 5 cm od gornje površine) prelazi granicu za profesionalnu izloženost, dok kod 13 terminala ove polje prelazi dopušteno vreme za izlaganje opšte populacije. Vrlo je važno istaći da je izloženost na ovim mernim mestima povremena i da se javlja u kratkom vremenskom intervalu. Izmerene vrednosti gustine M fluksa, na istom rastojanju, ne prelaze normativne vrednosti za profesionalnu izloženost i za izlaganje opšte populacije [8-10].

4. ZAKLJUČAK

Izloženosti elektromagnetskih poljima vrlo niskih frekvencija na mestu rukovacca-operatora, pri radu sa ispitivanim video displej terminalima, ne prelaze dopuštene
Табела 2. Резултати мерења густине магнетског флукса и јачине електричног полја

<table>
<thead>
<tr>
<th>Редни број VDT</th>
<th>B (μT)</th>
<th>E (V/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>35</td>
<td>0.1</td>
</tr>
<tr>
<td>2.</td>
<td>37</td>
<td>0.15</td>
</tr>
<tr>
<td>3.</td>
<td>52</td>
<td>0.05</td>
</tr>
<tr>
<td>4.</td>
<td>42</td>
<td>0.05</td>
</tr>
<tr>
<td>5.</td>
<td>92</td>
<td>1.2</td>
</tr>
<tr>
<td>6.</td>
<td>98</td>
<td>0.08</td>
</tr>
<tr>
<td>7.</td>
<td>52</td>
<td>0.2</td>
</tr>
<tr>
<td>8.</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td>10.</td>
<td>34</td>
<td>0.5</td>
</tr>
<tr>
<td>11.</td>
<td>68</td>
<td>0.2</td>
</tr>
<tr>
<td>12.</td>
<td>62</td>
<td>0.2</td>
</tr>
<tr>
<td>13.</td>
<td>54</td>
<td>0.2</td>
</tr>
<tr>
<td>14.</td>
<td>50</td>
<td>0.2</td>
</tr>
<tr>
<td>15.</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>16.</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>17.</td>
<td>92</td>
<td>1.2</td>
</tr>
<tr>
<td>18.</td>
<td>57</td>
<td>0.9</td>
</tr>
<tr>
<td>19.</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>20.</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>21.</td>
<td>76</td>
<td>0.2</td>
</tr>
<tr>
<td>22.</td>
<td>79</td>
<td>1.4</td>
</tr>
<tr>
<td>23.</td>
<td>89</td>
<td>0.2</td>
</tr>
<tr>
<td>24.</td>
<td>92</td>
<td>0.2</td>
</tr>
<tr>
<td>25.</td>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td>26.</td>
<td>43</td>
<td>0.3</td>
</tr>
<tr>
<td>27.</td>
<td>72</td>
<td>0.6</td>
</tr>
<tr>
<td>28.</td>
<td>30</td>
<td>0.2</td>
</tr>
<tr>
<td>29.</td>
<td>60</td>
<td>0.4</td>
</tr>
<tr>
<td>30.</td>
<td>46</td>
<td>0.2</td>
</tr>
<tr>
<td>31.</td>
<td>85</td>
<td>0.8</td>
</tr>
<tr>
<td>32.</td>
<td>63</td>
<td>0.3</td>
</tr>
<tr>
<td>33.</td>
<td>29</td>
<td>0.4</td>
</tr>
<tr>
<td>34.</td>
<td>33</td>
<td>0.2</td>
</tr>
<tr>
<td>35.</td>
<td>31</td>
<td>0.2</td>
</tr>
<tr>
<td>36.</td>
<td>52</td>
<td>0.3</td>
</tr>
<tr>
<td>37.</td>
<td>51</td>
<td>0.3</td>
</tr>
<tr>
<td>38.</td>
<td>63</td>
<td>0.3</td>
</tr>
<tr>
<td>39.</td>
<td>58</td>
<td>0.1</td>
</tr>
<tr>
<td>40.</td>
<td>37</td>
<td>0.1</td>
</tr>
<tr>
<td>41.</td>
<td>66</td>
<td>0.15</td>
</tr>
<tr>
<td>42.</td>
<td>31</td>
<td>0.8</td>
</tr>
<tr>
<td>43.</td>
<td>72</td>
<td>1.0</td>
</tr>
<tr>
<td>44.</td>
<td>48</td>
<td>0.08</td>
</tr>
<tr>
<td>45.</td>
<td>37</td>
<td>0.3</td>
</tr>
<tr>
<td>46.</td>
<td>3</td>
<td>1.9</td>
</tr>
<tr>
<td>47.</td>
<td>36</td>
<td>0.65</td>
</tr>
<tr>
<td>48.</td>
<td>77</td>
<td>0.5</td>
</tr>
<tr>
<td>49.</td>
<td>42</td>
<td>0.95</td>
</tr>
<tr>
<td>50.</td>
<td>25</td>
<td>1.6</td>
</tr>
<tr>
<td>51.</td>
<td>3</td>
<td>1.4</td>
</tr>
</tbody>
</table>

200
vrednosti. U uslovima kada efekti nejonzinačeg zračenja na biološko dovo rizan u dovoljnoj meri istraženi i razmatrani, treba što većeznaširiti uticaj drugih faktora (ergonomski i mikroklimatski faktori). Važnu ulogu bi svažako trebalo da ima i edukacija korisnika VDT, radi stvaranja realne slike potencijalnih štetnostiima zračenja VDT.

[Slika 3. Gautina M.rku na 30 cm ispred VDT.]

[Slika 4. Jačina E.polja na 30 cm ispred VDT]

LITERATURA

Abstract – Video Display Terminal (VDT) emis: X radiation, optical (ultraviolet - UV, visible and infrared - IR) radiation, radiafrequence radiation, varying very low and extremely low frequencies electric and magnetic fields and static electric field. The aim of this work was to estimate exposure of VDT users to ionizing radiation and varying very low frequencies (3 kHz-30 kHz) electric (E) and magnetic (H) fields. The measured values of X radiation were below of reference value - 3 μSv/h which defined in domestic Regulation. The measured values of magnetic density flux and strength of electric field at distance of 30 cm didn’t exceed limiting values from ICNIRP guidelines.

EXPOSURE OF VDT USERS TO X RADIATION AND VLF ELECTROMAGNETIC FIELDS

Dejan Živković, Slavica Vukelić,
Mirolav Ramiszajević, Branislav Vulević